Isolation of Interacting Channels in Decentralized Control Systems Using Instrumental Variables Method

Article Preview

Abstract:

This paper describes the use of partial correlation based instrumental variables method for the identification and isolation of weak interaction dynamics between subsystems in decentralized control systems. Unlike the available methods based on the ordinary least square, the proposed method clearly discriminates the interaction channels that have significant contribution to the interconnected subsystem from the ones which do not by reducing the model error that arises due to the process inputs correlation. The efficacy of the proposed method is illustrated through a case study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

435-438

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. D. Gudi and J. B. Rawlings, Identification for decentralized model predictive control, AIChE Journal, 52 (2006) 2198-2210.

DOI: 10.1002/aic.10781

Google Scholar

[2] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, Distributed model predictive control: A tutorial review and future research directions, Computers & Chemical Engineering, 51 (2013) 21-41.

DOI: 10.1016/j.compchemeng.2012.05.011

Google Scholar

[3] R. Tóth, V. Laurain, M. Gilson, and H. Garnier, Instrumental variable scheme for closed-loop LPV model identification, Automatica, 48 (2012) 2314-2320.

DOI: 10.1016/j.automatica.2012.06.037

Google Scholar

[4] L. Ljung, System identification, 2nd Ed., Prentice Hall PTR, New Jersey, (1999).

Google Scholar

[5] L. Mišković, A. Karimi, and M. Gevers, Closed-loop identification of multivariable systems: With or without excitation of all references?, Automatica, 44 (2008) 2048-(2056).

DOI: 10.1016/j.automatica.2007.11.016

Google Scholar

[6] M. Gevers, A. S. Bazanella, and L. Mišković, Identifiability and informative experiments in open and closed-loop identification, in Modeling, Estimation and Control, ed: Springer, (2007) 151-170.

DOI: 10.1007/978-3-540-73570-0_13

Google Scholar

[7] A. S. Bazanella, M. Gevers, and L. Miškovic, Closed-loop identification of MIMO systems: a new look at identifiability and experiment design, European Journal of Control, (2010) 228-239.

DOI: 10.3166/ejc.16.228-239

Google Scholar

[8] K. A. Clarke, The phantom menace: Omitted variable bias in econometric research, Conflict Management and Peace Science, 22 (2005) 341-352.

DOI: 10.1080/07388940500339183

Google Scholar

[9] L. F. Martins and V. J. Gabriel, Linear instrumental variables model averaging estimation, Computational Statistics & Data Analysis, 71 (2014) 709-724.

DOI: 10.1016/j.csda.2013.05.008

Google Scholar

[10] J. P. Congalidis, J. R. Richards, and W. H. Ray, Modeling and control of a copolymerization reactor, in American Control Conference, (1986) 1779-1793.

DOI: 10.23919/acc.1986.4789216

Google Scholar