Palm Bio-Oil Upgrading Research-Towards Effective Utilization of Waste

Article Preview

Abstract:

Biomass utilization has arouse great attention and interest in recent years as it offers a net zero carbon footprint and security of the feedstocks. Current utilization process of biomass can be classified into biochemical and thermochemical conversion process. Pyrolysis process seems to be the promising conversion process in securing chemical feedstock as pyrolysis oil can be futher upgraded for chemical extraction. This paper reviews the most abundance biomass in Malaysia which is palm waste and discusses the its utilization by prolysis process. Upgrading research of pyrolysis oil also been discussed as to promotes the effective utilization of waste and securing alternative energy source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

800-804

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shuit, S. H., K. T. Tan, K. T. Lee, and A. H. Kamaruddin, Oil palm biomass as a sustainable energy source: A Malaysian case study, Energy, vol. 34, pp.1225-1235, (2009).

DOI: 10.1016/j.energy.2009.05.008

Google Scholar

[2] Yaman, S., Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Conversion and Management, vol. 45, pp.651-671, 3/ (2004).

DOI: 10.1016/s0196-8904(03)00177-8

Google Scholar

[3] www. biomass. org. my/about_Biomass. php.

Google Scholar

[4] Roslan Abas, M. F. K., A Borhan A Nordin, Mohd Arif Simeh, A study on the Malaysian oil palm biomass sector- supply and perception of palm oil millers, Oil Palm Industry Economic Journal, vol. 11, pp.28-41, (2011).

DOI: 10.21894/opiej.2021.04

Google Scholar

[5] Malaysia, A. I., National Biomass Strategy 2020: New wealth creation for Malaysia's Palm Oil Industry, (2011).

Google Scholar

[6] Programme, U. N. D., Malaysia Generating Reneawable Energy from Palm Oil Wastes, (2007).

Google Scholar

[7] www. mpoc. org. my/Malaysian_Palm_Oil_Industry. aspx.

Google Scholar

[8] Yusoff, S., Renewable energy from palm oil – innovation on effective utilization of waste, Journal of Cleaner Production, vol. 14, pp.87-93, (2006).

DOI: 10.1016/j.jclepro.2004.07.005

Google Scholar

[9] Wanrosli, W. D., Z. Zainuddin, K. N. Law, and R. Asro, Pulp from oil palm fronds by chemical processes, Industrial Crops and Products, vol. 25, pp.89-94, (2007).

DOI: 10.1016/j.indcrop.2006.07.005

Google Scholar

[10] Jonsson, L. J., B. Alriksson, and N. -O. Nilvebrant, Bioconversion of Lignocellulose: Inhibitors and Detoxification, Biotechnology for Biofuels, vol. 6, (2013).

DOI: 10.1186/1754-6834-6-16

Google Scholar

[11] Klare, M. T. (2013, 9 december 2013). Our Fossil-Fueled Future: World Energy in 2040. Available: www. ecowatch. com/2013/09/10/fossil-fueled-future-world-energy-in-2040.

Google Scholar

[12] Nayan, N. K., S. Kumar, and R. K. Singh, Production of the liquid fuel by thermal pyrolysis of neem seed, Fuel, vol. 103, pp.437-443, (2013).

DOI: 10.1016/j.fuel.2012.08.058

Google Scholar

[13] Zhang, Q., J. Chang, T. Wang, and Y. Xu, Review of biomass pyrolysis oil properties and upgrading research, Energy Conversion and Management, vol. 48, pp.87-92, (2007).

DOI: 10.1016/j.enconman.2006.05.010

Google Scholar

[14] Bridgwater, A. V., Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, vol. 91, pp.87-102, (2003).

DOI: 10.1016/s1385-8947(02)00142-0

Google Scholar

[15] Cho, Y. H., H. D. Lee, and H. B. Park, Integrated Membrane Processes for Separation and Purification of Organic Acid from a Biomass Fermentation Process, Industrial & Engineering Chemistry Research, vol. 51, pp.10207-10219, 2012/08/01 (2012).

DOI: 10.1021/ie301023r

Google Scholar

[16] Lin, Y. and S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects, Applied microbiology and biotechnology, vol. 69, pp.627-642, (2006).

DOI: 10.1007/s00253-005-0229-x

Google Scholar

[17] Buswell, A. and H. Mueller, Mechanism of methane fermentation, Industrial & Engineering Chemistry, vol. 44, pp.550-552, (1952).

DOI: 10.1021/ie50507a033

Google Scholar

[18] Caputo, A. C., M. Palumbo, P. M. Pelagagge, and F. Scacchia, Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables, Biomass and Bioenergy, vol. 28, pp.35-51, (2005).

DOI: 10.1016/j.biombioe.2004.04.009

Google Scholar

[19] Mullen, C. A., A. A. Boateng, N. M. Goldberg, I. M. Lima, D. A. Laird, and K. B. Hicks, Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis, Biomass and Bioenergy, vol. 34, pp.67-74, (2010).

DOI: 10.1016/j.biombioe.2009.09.012

Google Scholar

[20] Czernik, S. and A. V. Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, Energy & Fuels, vol. 18, pp.590-598, 2004/03/01 (2004).

DOI: 10.1021/ef034067u

Google Scholar

[21] Abdullah, N. and H. Gerhauser, Bio-oil derived from empty fruit bunches, Fuel, vol. 87, pp.2606-2613, 9/ (2008).

DOI: 10.1016/j.fuel.2008.02.011

Google Scholar

[22] Bridgwater, A. V., D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass, Organic Geochemistry, vol. 30, pp.1479-1493, (1999).

DOI: 10.1016/s0146-6380(99)00120-5

Google Scholar

[23] Xu, J., J. Jiang, W. Lv, W. Dai, and Y. Sun, Rice husk bio-oil upgrading by means of phase separation and the production of esters from the water phase, and novolac resins from the insoluble phase, Biomass and Bioenergy, vol. 34, pp.1059-1063, (2010).

DOI: 10.1016/j.biombioe.2010.01.040

Google Scholar

[24] Chiaramonti, D., A. Oasmaa, and Y. Solantausta, Power generation using fast pyrolysis liquids from biomass, Renewable and Sustainable Energy Reviews, vol. 11, pp.1056-1086, 8/ (2007).

DOI: 10.1016/j.rser.2005.07.008

Google Scholar

[25] Abdul Aziz, S. M., R. Wahi, Z. Ngaini, and S. Hamdan, Bio-oils from microwave pyrolysis of agricultural wastes, Fuel Processing Technology, vol. 106, pp.744-750, (2013).

DOI: 10.1016/j.fuproc.2012.10.011

Google Scholar

[26] Tsai, W. T., M. K. Lee, and Y. M. Chang, Fast pyrolysis of rice husk: Product yields and compositions, Bioresource Technology, vol. 98, pp.22-28, (2007).

DOI: 10.1016/j.biortech.2005.12.005

Google Scholar

[27] Yang, C. Y. Z., B.; Moen, J.; Hennessy, K.; Liu, Y. H.; Lin, X. Y.; Wan, Y. Q.; Lei, H. W.; Chen, P.; Ruan, R. , Fractionation and characterization of bio-oil from microwave-assisted pyrolysis of corn stover, International Journal of Agricultural and Biological Engineering, vol. 3, p.54-61, (2010).

Google Scholar

[28] de Wild, P., H. Reith, and E. Heeres, Biomass pyrolysis for chemicals, Biofuels, vol. 2, pp.185-208, (2011).

DOI: 10.4155/bfs.10.88

Google Scholar

[29] Patel, R. N., S. Bandyopadhyay, and A. Ganesh, Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction, Energy, vol. 36, pp.1535-1542, 3/ (2011).

DOI: 10.1016/j.energy.2011.01.009

Google Scholar

[30] Zhang, S., Y. Yan, T. Li, and Z. Ren, Upgrading of liquid fuel from the pyrolysis of biomass, Bioresource Technology, vol. 96, pp.545-550, 3/ (2005).

DOI: 10.1016/j.biortech.2004.06.015

Google Scholar

[31] Wang, D., S. Czernik, D. Montané, M. Mann, and E. Chornet, Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming of the Pyrolysis Oil or Its Fractions, Industrial & Engineering Chemistry Research, vol. 36, pp.1507-1518, 1997/05/01 (1997).

DOI: 10.1021/ie960396g

Google Scholar