Effect of Modified MIL-53 with Multi-Wall Carbon Nanotubes and Nanofibers on CO2 Adsorption

Article Preview

Abstract:

There is a growing need of counter assessing the increase of releases greenhouse gases such as carbon dioxide by researching an alternative technology that can help to reduce carbon dioxide content in atmosphere. This research work investigates the potential of MIL-53 as CO2 capture and storage candidate by conducting an experiment with different pressure between the synthesised and modified MIL-53. To investigate the effect of the Multi-wall carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) in MIL-53 towards CO2 adsorption performance. The synthesised samples were characterized by Fourier Transform Spectroscopy (FTIR) and Brunauer, Emmett and Teller (BET) techniques. A significant change is observed in the region of the aromatic deformation vibrations due to the different substitution patterns of the aromatic ring. BET surface area for MWCNT@MIL-53 is higher than CNF@MIL-53 and MIL-53. MWCNTs showed the adsorption of CO2 uptake is 0.3mmole-1/g at 100Kpa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

870-873

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Liu, Z.U. Wang, and H. -C. Zhou, Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases: Science and Technology, 2012. 2(4): pp.239-259.

DOI: 10.1002/ghg.1296

Google Scholar

[2] S. Ullah, F. Ahmad, and P.S.M.M. Yusoff, Effect of boric acid and melamine on the intumescent fire-retardant coating composition for the fire protection of structural steel substrates, J. Appl. Polym. Sci. 128 (2013) 2983-2993.

DOI: 10.1002/app.38318

Google Scholar

[3] G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater. 160 (2008) 265-88.

DOI: 10.1016/j.jhazmat.2008.03.045

Google Scholar

[4] D.M. D'Alessandro, B. Smit, and J.R. Long, Carbon dioxide capture: prospects for new materials, Angew Chem Int Ed Engl. 49 (2010) 6058-82.

Google Scholar

[5] Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesium-based metal organic framework, J Colloid Interface Sci. 353 (2011) 549-56.

DOI: 10.1016/j.jcis.2010.09.065

Google Scholar

[6] Y. He, W. Zhou, R. Krishna, B. Chen, Microporous metal-organic frameworks for storage and separation of small hydrocarbons, Chem Commun (Camb). 48 (2012) 11813-31.

DOI: 10.1039/c2cc35418g

Google Scholar

[7] V. Finsy, L. Ma, L. Alaerts, D. E. De Vos, G. Baron, V. J. F. M. Denayer, Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous Mesoporous Mater. 120 (2009) 221-227.

DOI: 10.1016/j.micromeso.2008.11.007

Google Scholar

[8] E. Stavitski, E. A. Pidko, S. Couck, T. Remy, E. J. M. Hensen, B. M. Weckhuysen, J. Denayer, J. Gascon, F. Kapteijn, Complexity behind CO2 Capture on NH2-MIL-53(Al). Langmuir. 27 (2011) 3970-3976.

DOI: 10.1021/la1045207

Google Scholar

[9] Y. Hu, D. Xueliang J. Nan, J. Wanqin, R. Xiaoming, X. Nanping, L. Y. Moo, Metal-organic framework membranes fabricated via reactive seeding, Chem. Commun. 47 (2011) 737-739.

DOI: 10.1039/c0cc03927f

Google Scholar

[10] S. Ullah and F. Ahmad, Enhancing the Char Resistant of Expandable Graphite Based Intumescent Fire Retardant Coatings by using Multi-wall Carbon Nano Tubes for Structural Steel Solid State Phenom. 185 (2012) 90-93.

DOI: 10.4028/www.scientific.net/ssp.185.90

Google Scholar