[1]
S. Bojan and S. Durairaj, Producing Biodiesel from High Free Fatty Acid Jatropha Curcas Oil by A Two Step Method-An Indian Case Study, Journal of Sustainable Energy & Environment, vol. 3, pp.63-66, (2012).
Google Scholar
[2]
M. Gamba, A. A. Lapis, and J. Dupont, Supported ionic liquid enzymatic catalysis for the production of biodiesel, Advanced Synthesis & Catalysis, vol. 350, pp.160-164, (2008).
DOI: 10.1002/adsc.200700303
Google Scholar
[3]
Y. Liu, E. Lotero, J. G. Goodwin Jr, and C. Lu, Transesterification of triacetin using solid Brønsted bases, Journal of Catalysis, vol. 246, pp.428-433, (2007).
DOI: 10.1016/j.jcat.2007.01.006
Google Scholar
[4]
F. Chai, F. Cao, F. Zhai, Y. Chen, X. Wang, and Z. Su, Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst, Advanced Synthesis & Catalysis, vol. 349, pp.1057-1065, (2007).
DOI: 10.1002/adsc.200600419
Google Scholar
[5]
F. R. Abreu, D. G. Lima, E. H. Hamú, S. Einloft, J. C. Rubim, and P. A. Suarez, New metal catalysts for soybean oil transesterification, " Journal of the American Oil Chemists, Society, vol. 80, pp.601-604, (2003).
DOI: 10.1007/s11746-003-0745-6
Google Scholar
[6]
J. M. Fraile, N. García, J. A. Mayoral, E. Pires, and L. Roldán, The influence of alkaline metals on the strong basicity of Mg–Al mixed oxides: the case of transesterification reactions, Applied Catalysis A: General, vol. 364, pp.87-94, (2009).
DOI: 10.1016/j.apcata.2009.05.031
Google Scholar
[7]
Q. Shu, J. Gao, Y. Liao, and J. Wang, Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst, Chinese Journal of Chemical Engineering, vol. 19, pp.163-168, (2011).
DOI: 10.1016/s1004-9541(09)60193-2
Google Scholar
[8]
J. H. Lee, S. B. Kim, S. W. Kang, Y. S. Song, C. Park, S. O. Han, et al., Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process, Bioresource technology, vol. 102, pp.2105-2108, (2011).
DOI: 10.1016/j.biortech.2010.08.034
Google Scholar
[9]
S. H. Ha, M. N. Lan, S. H. Lee, S. M. Hwang, and Y. -M. Koo, Lipase-catalyzed biodiesel production from soybean oil in ionic liquids, Enzyme and Microbial Technology, vol. 41, pp.480-483, (2007).
DOI: 10.1016/j.enzmictec.2007.03.017
Google Scholar
[10]
T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chemical reviews, vol. 99, pp.2071-2084, (1999).
DOI: 10.1021/cr980032t
Google Scholar
[11]
L. D. S. Yadav, Garima, and R. Kapoor, One-Pot Reductive Sulfenylation and Thiocyanation of Carbonyl Compounds in Ionic Liquid Media, Synthetic Communications®, vol. 41, pp.100-112, (2010).
DOI: 10.1080/00397910903531854
Google Scholar
[12]
P. J. Dyson and T. J. Geldbach, Applications of ionic liquids in synthesis and catalysis, Interface-Electrochemical Society, vol. 16, pp.50-53, (2007).
DOI: 10.1149/2.f06071if
Google Scholar
[13]
S. Zhou, L. Liu, B. Wang, F. Xu, and R. C. Sun, Biodiesel preparation from transesterification of glycerol trioleate catalyzed by basic ionic liquids, Chinese Chemical Letters, vol. 23, pp.379-382, (2012).
DOI: 10.1016/j.cclet.2012.01.034
Google Scholar