[1]
A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol., 122 (1999) 73-93.
DOI: 10.1016/s0257-8972(99)00441-7
Google Scholar
[2]
L. R. Krishna,K. R. C. Somaraju,G. Sundararajan. The Tribological Performance of Ultra-hard Ceramic Composite Coatings Obtained through Microarc Oxidation. Surf. Coat. Technol., 163-164 (2003) 484-490.
DOI: 10.1016/s0257-8972(02)00646-1
Google Scholar
[3]
J. A. Curran,T. W. Clyne. The Thermal Conductivity of Plasma Electrolytic Oxide Coatings on Aluminium and Magnesium. Surf. Coat. Technol., 199 (2005) 177-183.
DOI: 10.1016/j.surfcoat.2004.11.045
Google Scholar
[4]
E. Matykina,A. Berkani,P. Skeldon G.E. Thompson. Real-time Imaging of Coating Growth during Plasma Electrolytic Oxidation of Titanium . Electrochimica Acta. 53 (2007) 1987-(1994).
DOI: 10.1016/j.electacta.2007.08.074
Google Scholar
[5]
A. L. Yerokhin,A. Shatrov,V. Samsonov,P. Shashkov,A. Pilkington,A. Leyland,A. Matthews. Oxide Ceramic Coatings on Aluminium Alloys Produced by a Pulsed Bipolar Plasma Electrolytic Oxidation Process. Surf. Coat. Technol., 199 (2005) 150-157.
DOI: 10.1016/j.surfcoat.2004.10.147
Google Scholar
[6]
P. I. Butyagin,Y. V. Khokhryakov,A. I. Mamaev. Microplasma systems for creating coatings on aluminium alloys. Materials Letters, 57 (2003) 1748-1751.
DOI: 10.1016/s0167-577x(02)01062-5
Google Scholar
[7]
J. Fanya,T. Honghui,L. Jiong,S. Liru. Structure and Microwave-absorbing Properties of Fe-particle Containing Alumina Prepared by Micro-arc Discharge Oxidation. Surf. Coat. Technol., 201 (2006) 292-295.
DOI: 10.1016/j.surfcoat.2005.11.116
Google Scholar
[8]
W. Zhang,K. Du,C. Yan,F. Wang. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Applied Surface Science, 254 (2008) 5216-5223.
DOI: 10.1016/j.apsusc.2008.02.047
Google Scholar
[9]
E. Matykina,R. Arrabal,F. Monfort,P. Skeldon G.E. Thompson. Incorporation of Zirconia into Coatings Formed by DC Plasma Electrolytic Oxidation of Aluminium in Nanoparticle Suspensions. Applied Surface Science, 255 (2008) 2830-2839.
DOI: 10.1016/j.apsusc.2008.08.036
Google Scholar
[10]
Suo Xiang-bo, Ma Shi-ning, Qiu Ji, Lv Qing-xing. Improvement of Surface porosity and properties of MAO ceramic coatings by incorporation of SiO2 nanoparticles. Journal of Aeronautical Materials, 29 (2009) 66-69. (In Chinese).
Google Scholar
[11]
Shining Ma, Xiangbo Suo, Ji Qiu. Fabrication of n-SiO2 reinforced Al2O3 composites coatings on 7A52 aluminum alloy by micro-arc oxidation. Advanced Materials Research, 97~101 (2010) 1463~1466. (In Chinese).
DOI: 10.4028/www.scientific.net/amr.97-101.1463
Google Scholar
[12]
Suo Xiang-bo, Qiu Ji, Zhu Hai-yan. Effects of n-SiO2 on growth dynamics of alumina coatings Formed on 7A52 aluminum alloy by micro-arc oxidation; MA Shi-ning, Journal of Aeronautical Materials, 32 (2012) 27-30. (In Chinese).
Google Scholar
[13]
J. F. Moulder, W. F. Stickle, P. E. Sobol. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Inc. USA.
Google Scholar
[14]
J A Curran, T W Clyne. The thermal conductivity of Plasma electrolytic Oxide coatings on aluminium and magnesium. Surf. Co-at. Technol., 199 (2005) 177~183.
DOI: 10.1016/j.surfcoat.2004.11.045
Google Scholar
[15]
Suo Xiang-bo. Fabrication, characterization and properties of nanocomposite coating on aluminum alloy prepared by micro-arc oxidation. the Academy of Armored Forces Engineering, Beijing, 2010. (In Chinese).
Google Scholar
[16]
W. Xue,Z. Deng,Y. Lai,R. Chen. Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy.J. Am. Ceram. Soc., 81 (1998) 1365-1368.
DOI: 10.1111/j.1151-2916.1998.tb02493.x
Google Scholar