Thermodynamic Assessment of B2O3-SiO2 Binary System

Abstract:

Article Preview

The B2O3-SiO2 binary system has been thermodynamically reassessed with CALPHAD approach. The substitutional solution model is adopted for liquid. A set of self-consistent parameters capable of reproducing the corresponding experimental phase diagram data and subliquidus immiscibility data has been obtained.

Info:

Periodical:

Edited by:

Fangping Zhang

Pages:

68-72

Citation:

H. M. Chen et al., "Thermodynamic Assessment of B2O3-SiO2 Binary System", Applied Mechanics and Materials, Vol. 628, pp. 68-72, 2014

Online since:

September 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] Information on http: /nsf. gov/mps/dmr/reports. jsp.

[2] J. Fuller and M.D. Sacks, Guest Editorial: Ultra-high temperature ceramics, J. Mater. Sci. , 39(19) (2004) 5885-5885.

DOI: https://doi.org/10.1023/b:jmsc.0000041685.85043.34

[3] L. Kaufman and H. Bernstein, Computer calculation of phase diagrams. New York: Academic Press. (1970).

[4] T.J. Rockett and W.R. Foster, J. Am. Ceram. Soc., 48(2) (1965) 75-80.

[5] A.V. Bleininger and P. Teetor, Trans. Am. Ceram. Soc., 14(1912) 210-217.

[6] G.W. Morey and E. Ingerson, Am. Mineral., 22(1) (1937) 37-48.

[7] G.W. Morey, J. Soc. Glass Technol., 35(167) (1951) 270-283.

[8] M. Foëx, Compt. Rend., 206(5) (1938) 349-350.

[9] Abd-El-Moneim, Abou-El-Azm, and H. Moore, J. Soc. Glass Technol., 37(176) (1953) 129-154T.

[10] E.M. Levin and G.M. Ugrinic, J. Res. Natl. Bur. Std., 51(1) (1953) 37-56, RP2430.

[11] E.M. Levin and G.W. Cleek, J. Am. Ceram. Soc., 41(5) (1958) 175-179.

[12] V. Dimbleby, F.W. Hodkin, M. Parkin, and W.E.S. Turr, J. Soc. Glass Technol., 7(25) (1923) 57-73.

[13] E. Jenckel, Glastech. Ber., 16(6) (1938) 191-195.

[14] M. Pichavant, Bull. Mineral, 101(1978) 498-502.

[15] R.J. Charles and F.E. Wagstaff, J. Am. Ceram. Soc., 51(1) (1968) 16-20.

[16] R.L. Hervig and A. Navrotsky, J. Am. Ceram. Soc., 68(6) (1985) 314-319.

[17] M. Boike, K. Hilpert, and F. Muller, J. Am. Ceram. Soc., 76(11) (1993) 2809-2812.

[18] C.T. Zhang and C.L. Ji, J. Northeast Univ. of Technol., 11(1) (1990) 8-12 (in Chinese).

[19] Z.C. Wang, Y. Su, and S.X. Tong, J. Chem. Thermodynamics, 28(1996) 1109-1113.

[20] M. M. Shul'ts, G.G. Ivanov, V.L. Stolyarova, and B.A. Shakhmatkin, Fiz. Khim. Stekla, 12(1986) 285.

[21] H. Yu, Q. Chen, and Z. p. Jin, CALPHAD, 23(1999) 101-111.

[22] B. Hallstedt, CALPHAD, 16(1992) 53-61.

[23] B. Sundman, B. Jansson, and J.O. Andersson, CALPHAD, 9(1985) 153-190.

[24] V.M. Danilenko, T.V. Andreeva, and Y.M. Goryacher, Inorg., Mater. (USSR), 18(2) (1982) 11-13.

[25] G. Baret, R. Madar, and C. Bernard, J. Electrochem. Soc., 138(9) (1991) 2830-2835.

[26] S.S. Kim and T.H. Sanders Jr., Ceram. Int., 26(2000) 769-778.

[27] S.A. Decterov, V. Swamy, and In-H. Jung, Int. J. Mat. Res., 98(10) (2007) 987-994.