Robust Control and Stability Analysis for Stochastic Systems with Markov Jump

Article Preview

Abstract:

Stochastic systems with Markov jump is a new type of stochastic system in recent years, which is a new field integrated by information, control and Markov process. This paper introduces the research history and the newest research trends of stochastic systems with Markov jump, and presents many widespread theoretical and application problems. Moreover, some new research topics and directions related to stochastic systems with Markov jump are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

684-687

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nosov: Stability of Functional Differential Equations (Academic Press, London, 1986).

Google Scholar

[2] X. Mao, C. Yuan: Stochastic Differential Equations with Markovian Switching (Imperial College Press, 2006).

Google Scholar

[3] A.S. Willsky, B.C. Rogers, Stochastic stability research for complex power systems (Cambridge, MA. Rep. ET-76-C-01-2295, 1979).

Google Scholar

[4] D. D. Sworder , R. O. Rogers: IEEE Trans. Automat. Contr. Vol. 28 (1983), pp.971-978.

Google Scholar

[5] M. Athans: IEEE Trans. Automat. Contr. Vol. 32 (1987) pp.286-293.

Google Scholar

[6] J.P. Lasalle: The stability of dynamical systems (Society for Industrial and Applied Mathematics, 1967).

Google Scholar

[7] L. Huang: Stability Theory (Peking University press, Beijing, 1992).

Google Scholar

[8] X. Mao: Stochastic Differential Equations and Applications (Horwood, 1997).

Google Scholar

[9] Y. Shen: Acta Automatica Sinica Vol. 25 (1999), pp.539-544.

Google Scholar

[10] X.R. Mao: Stochastic and Stochastic Reports Vol. 68 (2000), pp.273-295.

Google Scholar

[11] X.R. Mao: IEEE trans. On Automatic Control Vol. 47 (2002), pp.1604-1612.

Google Scholar

[12] C. Yuan, X.R. Mao: Automatica Vol. 40 (2004), pp.343-354.

Google Scholar

[13] X.R. Mao: Systems and Control Letters Vol. 35 (1998), pp.325-338.

Google Scholar

[14] G. Zames: IEEE Trans. Automatic Control Vol. 26 (1981), pp.301-320.

Google Scholar

[15] J. Doyle, and G. Stein: IEEE Trans. Automatic Control Vol. 26 (1981), pp.4-16.

Google Scholar

[16] D. Hinriechsen, A. J. Pritchard: SIAM J. Control Optim. Vol. 36 (1998), pp.504-1538.

Google Scholar

[17] A. Bouhtouri: International Journal of Robust and Nonlinear Control Vol. 9 (1999), pp.923-948.

Google Scholar

[18] S. Xu, J. Lam, C. Yang: IEEE Transaction of Automatic Control Vol. 46 (2001), pp.1321-1326.

Google Scholar

[19] S. Xu, T. Chen: IEEE Transaction of Automatic Control Vol. 47 (2002), p.2089-(2094).

Google Scholar

[20] S. Xu, T. Chen: IEEE Transaction on Signal Processing Vol. 50 (2002), pp.2998-3007.

Google Scholar

[21] W. Zhang: IEEE Transaction on Signal Processing Vol. 53 (2005), pp.589-598.

Google Scholar

[22] N. Berman, U. Shaked: Systems & Control Letters Vol. 55 (2006), pp.247-257.

Google Scholar

[23] W. Zhang, B.S. Chen: SIAM Journal on Control Optimization Vol. 44 (2006), p.1973-(1991).

Google Scholar

[24] B. Wei, H. Ji: System Science and Mathematics Vol. 27 (2007), pp.422-430.

Google Scholar

[25] I.Y. Kates, N.N. Krasovskii: Prikl. Mat. Mekh. Vol. 27 (1960), pp.809-823.

Google Scholar

[26] N.N. Krasovskii, E. A. Lidskii: Aut. Remote Control. Vol. 22 (1961), pp.1021-1025.

Google Scholar

[27] L.L. Yao: China science Vol. 33 (2003), pp.327-329.

Google Scholar

[28] F. Bernard, F. Dufour: IEEE Trans. On Automatic Control Vol. 42 (1997), pp.869-872.

Google Scholar

[29] P.V. Pakshin: Nonlinear Analysis Vol. 47 (2001), pp.2473-2484.

Google Scholar