[1]
Zhao M., A study on the basic theory of moving automatic block system[D], Northern Jiaotong University, Beijing, (1996).
Google Scholar
[2]
Zhang Y., Simulation study of railway line carrying capacity under moving autoblock condition[D], Northern Jiaotong University, Beijing, (1998).
Google Scholar
[3]
Takeuchi H., Goodman C. J., Sone S., Moving block signaling dynamics: performance measures and re-starting queued electric trains[J]. IEE Proceedings of Electronics Power Application, 2003, 150(4): 483-492.
DOI: 10.1049/ip-epa:20030258
Google Scholar
[4]
Hansen I. A., Pachl J., Railway Timetable and Traffic: Analysis, Modelling and Simulation[M]. Hamburg, Eurailpress, (2008).
Google Scholar
[5]
D'Ariano A., Albrecht T., Running Time Re-optimization During Real-time Timetable Perturbations. Southampton[M]. Computers in Railways X, WIT Press.
DOI: 10.2495/cr060531
Google Scholar
[6]
Mazzarello M., Ottaviani E., A traffic management system for real-time traffic optimisation in railways[J]. Transportation Research Part B, 2007, 41(2): 246-274.
DOI: 10.1016/j.trb.2006.02.005
Google Scholar
[7]
Albrecht T., The influence of anticipating train driving on the dispatching process in railway conflict situations[J]. Network and Spatial Economics, 2009, 9: 85-101.
DOI: 10.1007/s11067-008-9089-0
Google Scholar
[8]
Corman F., D'Ariano A., Pacciarelli D., M. Pranzo. Evaluation of green wave policy in real-time railway traffic management[J]. Transportation Research Part C, 2009, 17(6): 607-616.
DOI: 10.1016/j.trc.2009.04.001
Google Scholar
[9]
Bai K. Z., Tan H. L., Liu M. R., Kong L. J., A study on an improved Nagel-Schreckenberg traffic flow model with open boundary conditions[J]. Acta Physica Sinica, 2003, 52(10): 2421-2426.
DOI: 10.7498/aps.52.2421
Google Scholar
[10]
Kuang H., Kong L. J., Liu M. R., The study of a cellular automaton traffic flow model with mixed different-maximum-speed vehicles on single lane[J]. Acta Physica Sinica, 2004, 53(9): 2894-2898.
DOI: 10.7498/aps.53.2894
Google Scholar
[11]
Lei L., Xue Y., Dai S. Q., One-dimensional sensitive driving cellular automaton model for traffic flow[J]. Acta Physica Sinica, 2003, 52(9): 2121-2126.
Google Scholar
[12]
Huang P. H., Kong L. J., Liu M. R., The study on the one-dimensional random traffic flow model[J]. Acta Physica Sinica, 2001, 50(1): 30-36.
Google Scholar
[13]
Wang B. H., Wang L., Xu B. M., Hu B. B., The gradual accelerating traffic flow cellular automaton model in which only high speed car can be delayed[J]. Acta Physica Sinica, 2000, 49(10): 1926-(1932).
Google Scholar
[14]
Tian J., Jia N., Zhu N., Jia B., Yuan Z., Brake light cellular automaton model with advanced randomization for traffic breakdown[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 282–298.
DOI: 10.1016/j.trc.2014.04.008
Google Scholar
[15]
Tian J., Yuan Z., Jia B., Fan H., Wang T., Cellular automaton model in the fundamental diagram approach reproducing the synchronized outflow of wide moving jams[J]. Physics Letters A, 2012, 376 (44): 2781-2787.
DOI: 10.1016/j.physleta.2012.08.035
Google Scholar
[16]
Li K. P., Gao Z. Y., Ning B., Cellular automaton model for railway traffic[J]. Journal of Computational Physics, 2005, 209: 179.
DOI: 10.1016/j.jcp.2005.03.016
Google Scholar
[17]
Li K. P., Gao Z. Y., Ning B., Modelling the railway traffic using cellular automation model[J]. International Journal Modern Physics C, 2005, 16: 921.
Google Scholar
[18]
Luo L. Y., Wu W. Q., Analysis on the safety time interval of train with movable block system in urban rail transit[J]. China Railway Science, 2005, 26(1): 119-123, In Chinese.
Google Scholar
[19]
Tang T., Li K. P., Traffic modelling for moving-block train control system[J]. Communications in theoretical physics, 2007, 47: 601.
Google Scholar