Analysis and Simulation of Binary Search Algorithm

Article Preview

Abstract:

Some drawbacks of existing binary search algorithm has been improved to reduce the number of paging through improved reader in this paper to reduce the number of bytes for each tag and reader communication transmission, thereby reducing the improved algorithm of recognition time. At the same time, an improved binary anti-collision algorithm, and by Matlab simulation results show the advantages of the improved algorithm compared to other improved binary search algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1692-1695

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. T. Rashid, A. A. Ali, M. Frasca, L. Fortuna: Path planning with obstacle avoidance based on visibility binary tree algorithm, Robotics and Autonomous Systems, Vol. 61 (2013), pp.1440-1449.

DOI: 10.1016/j.robot.2013.07.010

Google Scholar

[2] A. Hatamlou: In search of optimal centroids on data clustering using a binary search algorithm, Pattern Recognition Letters, Vol. 33 (2012), pp.1756-1760.

DOI: 10.1016/j.patrec.2012.06.008

Google Scholar

[3] A. A. Ibrahim, A. Mohamed, H. Shareef: Optimal power quality monitor placement in power systems using an adaptive quantum-inspired binary gravitational search algorithm, International Journal of Electrical Power & Energy Systems, Vol. 57 (2014).

DOI: 10.1016/j.ijepes.2013.12.019

Google Scholar

[4] D. Manjarres, I. Landa-Torres: A survey on applications of the harmony search algorithm, Engineering Applications of Artificial Intelligence, Vol. 26 (2013), pp.1818-1831.

DOI: 10.1016/j.engappai.2013.05.008

Google Scholar

[5] A. M. Turky, S. Abdullah: A multi-population harmony search algorithm with external archive for dynamic optimization problems, Information Sciences, Vol. 272 (2014), pp.84-95.

DOI: 10.1016/j.ins.2014.02.084

Google Scholar

[6] K. Fan, W. You, Y. Li: An effective modified binary particle swarm optimization (mBPSO) algorithm for multi-objective resource allocation problem (MORAP), Applied Mathematics and Computation, Vol. 221 (2013), pp.257-267.

DOI: 10.1016/j.amc.2013.06.039

Google Scholar

[7] W. Panny: Deletions in random binary search trees: A story of errors, Journal of Statistical Planning and Inference, Vol. 140 (2010), pp.2335-2345.

DOI: 10.1016/j.jspi.2010.01.028

Google Scholar

[8] R. Hassin, O. Schneider: A local search algorithm for binary maximum 2-path partitioning, Discrete Optimization, Vol. 10 (2013), pp.333-360.

DOI: 10.1016/j.disopt.2013.09.001

Google Scholar

[9] A. Layeb: A hybrid quantum inspired harmony search algorithm for 0–1 optimization problems, Journal of Computational and Applied Mathematics, Vol. 253 (2013), pp.14-25.

DOI: 10.1016/j.cam.2013.04.004

Google Scholar

[10] S. Mirjalili, A. Lewis: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization, Swarm and Evolutionary Computation, Vol. 9 (2013), pp.1-14.

DOI: 10.1016/j.swevo.2012.09.002

Google Scholar