A Novel In-Line Fiber Mach–Zehnder Interferometer Temperature Sensor Made of Thermally Expanded Core Fiber

Article Preview

Abstract:

A novel in-line fiber temperature sensor by splicing a piece of single mode fiber between two thermally expanded core fibers at their core-expanded ends is proposed and demonstrated. This structure forms an all fiber Mach–Zehnder interferometer due to the interference between the core mode and the cladding modes of the single mode fiber. The fabricated sensor is applied to measure temperature changes. The temperature sensitivity of the sensor at a length of 6.3cm is about 65.3 pm/°C. The proposed sensor is low cost, easily fabricated, and may be useful for detection of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

856-859

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Liang, Y. Huang, Y. Xu et al., Highly sensitive fiber Bragg grating refractive index sensors [J] . Appl . Phys. Let t., Vol. 86 (2005), p.151122.

DOI: 10.1063/1.1904716

Google Scholar

[2] C. -H. Lin, L. Jiang, H. Xiao et al., Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser [J]. Opt. Lett., Vol. 34 (2009), p.2408~2410.

DOI: 10.1364/ol.34.002408

Google Scholar

[3] X. Guo, L. Tong, Supported microfiber loops for optical sensing [J]. Opt. Express, Vol. 16 (2008), p . 14429~14434.

DOI: 10.1364/oe.16.014429

Google Scholar

[4] X. Fang, C.R. Liao, D.N. Wang, Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing [J]. Opt. Lett., Vol. 35 (2010), p.1007~1009.

DOI: 10.1364/ol.35.001007

Google Scholar

[5] P. Lu, L. Men, K. Sooley et al., Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature[J]. Appl. Phys. Lett., Vol. 94 (2009), p.131110.

DOI: 10.1063/1.3115029

Google Scholar

[6] Z. Tian, S. Yam, J. Barnes, et al., Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers[J]. IEEE Photon. Technol. Lett., Vol. 20 (2008), p.626~628.

DOI: 10.1109/lpt.2008.919507

Google Scholar

[7] L.V. Nguyen, D. Hwang, S. Moon et al., High temperature fiber sensor with high sensitivity based on core diameter mismatch [J]. Opt. Express, vol. 16(2008) p.11369~11375.

DOI: 10.1364/oe.16.011369

Google Scholar

[8] B. H. Lee and J. Nishii, Self-interference of long-period fibre grating and its application as temperature sensor[J]. Electron. Lett., vol. 34(1998) p.2059~(2060).

DOI: 10.1049/el:19981420

Google Scholar

[9] E. Li, X. Wang and C. Zhang, Fiber-optic temperature sensor based on interference of selective higher-order modes[J] . Appl. Phys. Lett., vol. 89(2006) , p.091119.

DOI: 10.1063/1.2344835

Google Scholar

[10] J. Villatoro, V.P. Minkovich, V. Pruneri et al., Simple all-microstructured optical-fiber interferometer built via fusion splicing[J]. Opt. Express, vol. 15(2007), p.1491~1496.

DOI: 10.1364/oe.15.001491

Google Scholar

[11] J. Zhu, A. Zhang, T. Xia et al., Fiber-optic high temperature sensor based on thin core fiber modal interferometer[J]. IEEE Sensors Journal, vol. 10(2010) p.1415~1418.

DOI: 10.1109/jsen.2010.2042592

Google Scholar

[12] M. Kihara, M. Matsumoto, T. Haibara et al., Characteristics of thermally expanded core fiber.

Google Scholar