On Analysis and Judgment of Balance for Boolean Functions by E-Derivative

Article Preview

Abstract:

Using the derivative of the Boolean function and the e-derivative defined by ourselves as research tools and deeply into the internal structure of Boolean, we study the issues of the analysis and judgment of balance for Boolean functions. We get that the linear functions and the nonzero derivative of the product of two linear functions are balanced functions, and the product of two linear functions are not balanced functions. We also obtain the quadratic homogeneous Booleans are not all balanced function. Besides, we deduce the theorem which determine the sum of linear function and balanced function whether it is a balanced function. What is more, the features of balance of Boolean functions can be reflected easily and effectively by e-derivative.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-135

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Massey, J. L.: Shift-register synthesis and BCH decoding, IEEE Trans Inform Theory, 1969, 15, (1), pp.122-127.

DOI: 10.1109/tit.1969.1054260

Google Scholar

[2] Rueppel, R. A., Staffelbach, O. J.: Products of linear recurring seguences with maximum complexity, IEEE Trans Inform Theory, 1987, 33, (1), pp.124-131.

DOI: 10.1109/tit.1987.1057268

Google Scholar

[3] Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES'. Advances in Cryptology-CRYPTO, 92, Santa Barbara, California, USA, 1993, LNCS, 740: 487-496.

DOI: 10.1007/3-540-48071-4_34

Google Scholar

[4] Matsui, M.: The first experimental cryptanalysis of the data encryption standard'. Advances in Cryptology-CRYPTO, 94, Santa Barbara, California, USA, 1994, LNCS, 839: 1-11.

DOI: 10.1007/3-540-48658-5_1

Google Scholar

[5] Siegenthaler, T.: Correlation immunity of nonlinear combining functions for cryptographic applications, IEEE Transactions on Information Theory, 1984, IT-30 (5): 776-780.

DOI: 10.1109/tit.1984.1056949

Google Scholar

[6] Webster, A. F., Tavares, S. E.: On the design of S-boxes'. Advances in Cryptology-CRYPTO, 85, Santa Barbara, California, USA, 1986, LNCS, 218, pp.523-534.

DOI: 10.1007/3-540-39799-x_41

Google Scholar

[7] Forre, R.: The strict avalanche criterion: spectral properties of Boolean functions and an extended definition'. Advances in Cryptology-CRYPTO, 88, Santa Barbara, California, USA, 1990, LNCS, 403, pp.450-468.

DOI: 10.1007/0-387-34799-2_31

Google Scholar

[8] Cusick, T. W.: Boolean functions satisfying a higher order strict avalanche criterion'. Advances in Cryptology-EUROCRYPT, 93, Lofthus, Norway, 1994, LNCS, 765: 102-117.

DOI: 10.1007/3-540-48285-7_9

Google Scholar

[9] Carlet, C., Feng, K.: An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity,. Advances in Cryptology-ASIACRYPT 2008, Melbourne, Australia, 2008, LNCS, 5350: 425-440.

DOI: 10.1007/978-3-540-89255-7_26

Google Scholar

[10] Fu, S., Qu, L., Li, C., et al.: Balanced rotation symmetric Boolean functions with maximum algebraic immunity, IET Information Security, 2011, 5(2): 93-99.

DOI: 10.1049/iet-ifs.2010.0048

Google Scholar

[11] Fu, S. J., Li, C., Matsuura, K., et al.: Balanced 2p-variable rotation symmetric Boolean functions with maximum algebraic immunity, Applied Mathematics Letters, 2011, 24 (12): 2093-(2096).

DOI: 10.1016/j.aml.2011.06.004

Google Scholar

[12] He, L., Wang, Z., Li, W.: Algorithm of reducing the balanced H-Boolean function correlation-measure and research on correlation issue, Journal on Communications, 2010, 31(2): 93-99. (In Chinese).

Google Scholar

[13] Reed, I. S.: A class of multiple-error-correcting codes and the decoding scheme, IRE Transactions on Information Theory, 1954, 4(4): 38-49.

DOI: 10.1109/tit.1954.1057465

Google Scholar

[14] Akers, S. B.: On a theory of Boolean functions, Journal of the Society for Industrial and Applied Mathematics, 1959, 7(4): 487-498.

Google Scholar

[15] Wen, Q., Niu, X., and Yang, Y.: The Boolean Functions in Modern cryptology, (Science Press of China, 2000). (In Chinese).

Google Scholar

[16] Huang, J., Wang, Z.: The relationship between correlation immune and weight of H Boolean functions, Journal on Communications, 2012, 33, (2), pp.110-118. (In Chinese).

Google Scholar

[17] Huang, J., Wang, Z., Zhang, Z.: Algebraic immune order of correlation immune functions satisfying the strict avalanche criterion, Computer Science, 2013, 40(4): 147-151. (In Chinese).

Google Scholar