[1]
Massey, J. L.: Shift-register synthesis and BCH decoding, IEEE Trans Inform Theory, 1969, 15, (1), pp.122-127.
DOI: 10.1109/tit.1969.1054260
Google Scholar
[2]
Rueppel, R. A., Staffelbach, O. J.: Products of linear recurring seguences with maximum complexity, IEEE Trans Inform Theory, 1987, 33, (1), pp.124-131.
DOI: 10.1109/tit.1987.1057268
Google Scholar
[3]
Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES'. Advances in Cryptology-CRYPTO, 92, Santa Barbara, California, USA, 1993, LNCS, 740: 487-496.
DOI: 10.1007/3-540-48071-4_34
Google Scholar
[4]
Matsui, M.: The first experimental cryptanalysis of the data encryption standard'. Advances in Cryptology-CRYPTO, 94, Santa Barbara, California, USA, 1994, LNCS, 839: 1-11.
DOI: 10.1007/3-540-48658-5_1
Google Scholar
[5]
Siegenthaler, T.: Correlation immunity of nonlinear combining functions for cryptographic applications, IEEE Transactions on Information Theory, 1984, IT-30 (5): 776-780.
DOI: 10.1109/tit.1984.1056949
Google Scholar
[6]
Webster, A. F., Tavares, S. E.: On the design of S-boxes'. Advances in Cryptology-CRYPTO, 85, Santa Barbara, California, USA, 1986, LNCS, 218, pp.523-534.
DOI: 10.1007/3-540-39799-x_41
Google Scholar
[7]
Forre, R.: The strict avalanche criterion: spectral properties of Boolean functions and an extended definition'. Advances in Cryptology-CRYPTO, 88, Santa Barbara, California, USA, 1990, LNCS, 403, pp.450-468.
DOI: 10.1007/0-387-34799-2_31
Google Scholar
[8]
Cusick, T. W.: Boolean functions satisfying a higher order strict avalanche criterion'. Advances in Cryptology-EUROCRYPT, 93, Lofthus, Norway, 1994, LNCS, 765: 102-117.
DOI: 10.1007/3-540-48285-7_9
Google Scholar
[9]
Carlet, C., Feng, K.: An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity,. Advances in Cryptology-ASIACRYPT 2008, Melbourne, Australia, 2008, LNCS, 5350: 425-440.
DOI: 10.1007/978-3-540-89255-7_26
Google Scholar
[10]
Fu, S., Qu, L., Li, C., et al.: Balanced rotation symmetric Boolean functions with maximum algebraic immunity, IET Information Security, 2011, 5(2): 93-99.
DOI: 10.1049/iet-ifs.2010.0048
Google Scholar
[11]
Fu, S. J., Li, C., Matsuura, K., et al.: Balanced 2p-variable rotation symmetric Boolean functions with maximum algebraic immunity, Applied Mathematics Letters, 2011, 24 (12): 2093-(2096).
DOI: 10.1016/j.aml.2011.06.004
Google Scholar
[12]
He, L., Wang, Z., Li, W.: Algorithm of reducing the balanced H-Boolean function correlation-measure and research on correlation issue, Journal on Communications, 2010, 31(2): 93-99. (In Chinese).
Google Scholar
[13]
Reed, I. S.: A class of multiple-error-correcting codes and the decoding scheme, IRE Transactions on Information Theory, 1954, 4(4): 38-49.
DOI: 10.1109/tit.1954.1057465
Google Scholar
[14]
Akers, S. B.: On a theory of Boolean functions, Journal of the Society for Industrial and Applied Mathematics, 1959, 7(4): 487-498.
Google Scholar
[15]
Wen, Q., Niu, X., and Yang, Y.: The Boolean Functions in Modern cryptology, (Science Press of China, 2000). (In Chinese).
Google Scholar
[16]
Huang, J., Wang, Z.: The relationship between correlation immune and weight of H Boolean functions, Journal on Communications, 2012, 33, (2), pp.110-118. (In Chinese).
Google Scholar
[17]
Huang, J., Wang, Z., Zhang, Z.: Algebraic immune order of correlation immune functions satisfying the strict avalanche criterion, Computer Science, 2013, 40(4): 147-151. (In Chinese).
Google Scholar