Construction of Asymmetric Quantum Product Codes Based Repeated-Root Cyclic Codes

Article Preview

Abstract:

A kind of classical product codes based on repeated-root cyclic codes are considered in this paper, and the classical product codes are applied to construct the asymmetric quantum product codes. The novel asymmetric quantum product codes have great asymmetry for correcting Z errors and X errors, and the parameters of asymmetric quantum product codes can be precisely determined by the properties of the repeated-root cyclic codes and their dual codes. The examples show that these asymmetric quantum product codes based repeated-root cyclic codes are more efficient than some existent asymmetric quantum product codes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1668-1673

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Steane: Multiple particle interference and quantum error correction. Proceedings of Royal Society Lond. A. Vol. 452 (1996), p.2551–2577.

DOI: 10.1098/rspa.1996.0136

Google Scholar

[2] L. Ioffe, M. Mezard: Asymmetric Quantum Error-correcting Codes. Physical Review A. Vol. 75 (2007), pp.032345-4.

Google Scholar

[3] Jianfa Qian, Lina Zhang: New optimal asymmetric quantum codes. Modern Physics Letters B. vol. 27 (2013).

Google Scholar

[4] P. K. Sarvepalli, A. Klappenecher, M. Rotteler: Asymmetric Quantum Codes: Constructions, Bounds, and Performance. Proceedings of Royal Society A. Vol. 465 (2009), pp.1645-1672.

DOI: 10.1098/rspa.2008.0439

Google Scholar

[5] M. Hamada: Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction. IEEE Transactions on Information Theory. Vol. 54 (2008), pp.5689-5704.

DOI: 10.1109/tit.2008.2006416

Google Scholar

[6] G. G. La Guardia: Asymmetric Quantum Product Codes. International Journal of Quantum Information, Vol. 10 (2012), pp.125005-11.

Google Scholar

[7] F. J. Macwilliams and N. J. A. Sloane: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

Google Scholar

[8] H. Q. Dinh: On the Linear Ordering of Some Classes of Negacyclic and Cyclic Codes and Their Distance Distributions. Finite Fields and Their Applications, Vol. 14 (2008), pp.22-40.

DOI: 10.1016/j.ffa.2007.07.001

Google Scholar

[9] M. Grassl, M. Rotteler: Quantum block and convolutional codes from self-orthogonal product codes. Proceedings of International Symposium on Information Theory. (2005), pp.1018-1022.

DOI: 10.1109/isit.2005.1523493

Google Scholar

[10] Jianfa Qian, Lina Zheng: Nonbinary Quantum Codes Drived form Repeated-root Cyclic Codes. Modern Physics Letters B. Vol. 27 (2013), pp.1350053-9.

DOI: 10.1142/s021798491350053x

Google Scholar

[11] M. F. Ezerman, San Lin, P. Sole: Additive Asymmetric Quantum Codes. IEEE Transactions on Information Theory. Vol. 57 (2011), pp.5536-555.

DOI: 10.1109/tit.2011.2159040

Google Scholar