[1]
A. M. Steane: Multiple particle interference and quantum error correction. Proceedings of Royal Society Lond. A. Vol. 452 (1996), p.2551–2577.
DOI: 10.1098/rspa.1996.0136
Google Scholar
[2]
L. Ioffe, M. Mezard: Asymmetric Quantum Error-correcting Codes. Physical Review A. Vol. 75 (2007), pp.032345-4.
Google Scholar
[3]
Jianfa Qian, Lina Zhang: New optimal asymmetric quantum codes. Modern Physics Letters B. vol. 27 (2013).
Google Scholar
[4]
P. K. Sarvepalli, A. Klappenecher, M. Rotteler: Asymmetric Quantum Codes: Constructions, Bounds, and Performance. Proceedings of Royal Society A. Vol. 465 (2009), pp.1645-1672.
DOI: 10.1098/rspa.2008.0439
Google Scholar
[5]
M. Hamada: Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction. IEEE Transactions on Information Theory. Vol. 54 (2008), pp.5689-5704.
DOI: 10.1109/tit.2008.2006416
Google Scholar
[6]
G. G. La Guardia: Asymmetric Quantum Product Codes. International Journal of Quantum Information, Vol. 10 (2012), pp.125005-11.
Google Scholar
[7]
F. J. Macwilliams and N. J. A. Sloane: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
Google Scholar
[8]
H. Q. Dinh: On the Linear Ordering of Some Classes of Negacyclic and Cyclic Codes and Their Distance Distributions. Finite Fields and Their Applications, Vol. 14 (2008), pp.22-40.
DOI: 10.1016/j.ffa.2007.07.001
Google Scholar
[9]
M. Grassl, M. Rotteler: Quantum block and convolutional codes from self-orthogonal product codes. Proceedings of International Symposium on Information Theory. (2005), pp.1018-1022.
DOI: 10.1109/isit.2005.1523493
Google Scholar
[10]
Jianfa Qian, Lina Zheng: Nonbinary Quantum Codes Drived form Repeated-root Cyclic Codes. Modern Physics Letters B. Vol. 27 (2013), pp.1350053-9.
DOI: 10.1142/s021798491350053x
Google Scholar
[11]
M. F. Ezerman, San Lin, P. Sole: Additive Asymmetric Quantum Codes. IEEE Transactions on Information Theory. Vol. 57 (2011), pp.5536-555.
DOI: 10.1109/tit.2011.2159040
Google Scholar