[1]
Jena, M.K., Shunmugaraj, P., & Das, P. C. 2008. A non-stationary subdivision scheme for curve interpolation. Anziam Journal, 44: E216-E235.
DOI: 10.21914/anziamj.v44i0.494
Google Scholar
[2]
Daniel, S., & Shunmugaraj, P. 2011. Some interpolating non-stationary subdivision schemes. In Computer Science and Society (ISCCS), International Symposium on. IEEE:400-403.
DOI: 10.1109/isccs.2011.110
Google Scholar
[3]
Daniel, S., & Shunmugaraj, P. 2009b. An interpolating 6-point C2 non-stationary subdivision scheme. Journal of computational and applied mathematics, 230(1): 164-172.
DOI: 10.1016/j.cam.2008.11.006
Google Scholar
[4]
Beccari, G., & Romani, L. 2007. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. Computer Aided Geometric Design, 24(1): 1-9.
DOI: 10.1016/j.cagd.2006.10.003
Google Scholar
[5]
Beccari, C., Casciola, G., & Romani, L. 2009. Shape controlled interpolatory ternary subdivision. Applied mathematics and computation, 215(3): 916-927.
DOI: 10.1016/j.amc.2009.06.014
Google Scholar
[6]
Conti, C., Romani, L., Simos, T. E. Psihoyios, G. & Tsitouras, C. 2010. A new family of interpolatory non-stationary subdivision schemes for curve design in geometric modeling. In Aip Conference Proceedings , 1281(1): 523.
DOI: 10.1063/1.3498528
Google Scholar
[7]
Daniel, S., & Shunmugaraj, P. 2009a. An approximating C2 non-stationary subdivision scheme. Computer Aided Geometric Design, 26(7): 810-821.
DOI: 10.1016/j.cagd.2009.02.007
Google Scholar
[8]
Siddiqi, S. S., & Younis, M. 2012. Ternary three point non-stationary subdivision scheme. esearch Journal of Applied Sciences, Engineering and Technology, 4(13):1875-1882.
Google Scholar
[9]
Siddiqi, S. S., & Younis, M. 2013. A Five-Point C4 Non-Stationary Subdivision Scheme. J. Basic. Appl. Sci. Res, 3(1): 53-61.
Google Scholar
[10]
Daniel, S. 2008. Three point stationary and non-stationary subdivision schemes. In 2008 3rd International Conference on Geometric Modeling and Imaging : 3-8.
DOI: 10.1109/gmai.2008.13
Google Scholar
[11]
Mustafa, G. & Bari, M. 2014. A New Class of Odd-Point Ternary Non-Stationary Schemes. British Journal of Mathematics & Computer Science, 4(1): 133-152.
DOI: 10.9734/bjmcs/2014/3736
Google Scholar
[12]
Lyche, T. 1979. A Newton form for trigonometric Hermite interpolation. BIT Numerical Mathematics, 19(2): 229-235.
DOI: 10.1007/bf01930853
Google Scholar
[13]
Dyn, N., & Levin, D. 1995. Analysis of asymptotically equivalent binary subdivision schemes. Journal of mathematical analysis and applications, 193(2): 594-621.
DOI: 10.1006/jmaa.1995.1256
Google Scholar
[14]
Dyn, N. 1992. Subdivision schemes in CAGD. Advances in numerical analysis, 2: 36-104.
Google Scholar