A Five-Point Non-Stationary Interpolating Scheme

Article Preview

Abstract:

A five-point non-stationary interpolating scheme is proposed in this paper. The limit curve of the scheme is C1. The scheme can reproduce all original function curves spanned by exactly. Comparison experiments are also given to better demonstrate it.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1689-1693

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jena, M.K., Shunmugaraj, P., & Das, P. C. 2008. A non-stationary subdivision scheme for curve interpolation. Anziam Journal, 44: E216-E235.

DOI: 10.21914/anziamj.v44i0.494

Google Scholar

[2] Daniel, S., & Shunmugaraj, P. 2011. Some interpolating non-stationary subdivision schemes. In Computer Science and Society (ISCCS), International Symposium on. IEEE:400-403.

DOI: 10.1109/isccs.2011.110

Google Scholar

[3] Daniel, S., & Shunmugaraj, P. 2009b. An interpolating 6-point C2 non-stationary subdivision scheme. Journal of computational and applied mathematics, 230(1): 164-172.

DOI: 10.1016/j.cam.2008.11.006

Google Scholar

[4] Beccari, G., & Romani, L. 2007. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. Computer Aided Geometric Design, 24(1): 1-9.

DOI: 10.1016/j.cagd.2006.10.003

Google Scholar

[5] Beccari, C., Casciola, G., & Romani, L. 2009. Shape controlled interpolatory ternary subdivision. Applied mathematics and computation, 215(3): 916-927.

DOI: 10.1016/j.amc.2009.06.014

Google Scholar

[6] Conti, C., Romani, L., Simos, T. E. Psihoyios, G. & Tsitouras, C. 2010. A new family of interpolatory non-stationary subdivision schemes for curve design in geometric modeling. In Aip Conference Proceedings , 1281(1): 523.

DOI: 10.1063/1.3498528

Google Scholar

[7] Daniel, S., & Shunmugaraj, P. 2009a. An approximating C2 non-stationary subdivision scheme. Computer Aided Geometric Design, 26(7): 810-821.

DOI: 10.1016/j.cagd.2009.02.007

Google Scholar

[8] Siddiqi, S. S., & Younis, M. 2012. Ternary three point non-stationary subdivision scheme. esearch Journal of Applied Sciences, Engineering and Technology, 4(13):1875-1882.

Google Scholar

[9] Siddiqi, S. S., & Younis, M. 2013. A Five-Point C4 Non-Stationary Subdivision Scheme. J. Basic. Appl. Sci. Res, 3(1): 53-61.

Google Scholar

[10] Daniel, S. 2008. Three point stationary and non-stationary subdivision schemes. In 2008 3rd International Conference on Geometric Modeling and Imaging : 3-8.

DOI: 10.1109/gmai.2008.13

Google Scholar

[11] Mustafa, G. & Bari, M. 2014. A New Class of Odd-Point Ternary Non-Stationary Schemes. British Journal of Mathematics & Computer Science, 4(1): 133-152.

DOI: 10.9734/bjmcs/2014/3736

Google Scholar

[12] Lyche, T. 1979. A Newton form for trigonometric Hermite interpolation. BIT Numerical Mathematics, 19(2): 229-235.

DOI: 10.1007/bf01930853

Google Scholar

[13] Dyn, N., & Levin, D. 1995. Analysis of asymptotically equivalent binary subdivision schemes. Journal of mathematical analysis and applications, 193(2): 594-621.

DOI: 10.1006/jmaa.1995.1256

Google Scholar

[14] Dyn, N. 1992. Subdivision schemes in CAGD. Advances in numerical analysis, 2: 36-104.

Google Scholar