Mappings from Binary Variables to QAM Symbols and Improvement of Peak Envelope Power of OFDM Systems

Article Preview

Abstract:

This paper establishes a mapping relationship from independent binary variables to QAM symbols. By these proposed mappings square QAM constellation can be produced by binary signals rather than quaternary signals, which is advantageous to operation of those apparatuses driven only by binary signals. As one of applications of these presented mappings, we give an example to verify improvement of upper bounds of peak envelope power in an OFDM communication system employing QAM complementary sequences.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4205-4209

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Anand and P. V. Kumar. Low-correlation sequences over the QAM constellation, IEEE Trans. Inf. Theory, 54(4), 2008, 791-810.

DOI: 10.1109/tit.2007.913512

Google Scholar

[2] C Y. Chang, Y. Li, and J. Hirata, New 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (5), 2010, 2479-2485.

DOI: 10.1109/tit.2010.2043871

Google Scholar

[3] H. Lee and S. H. Golomb, A new construction of 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 52(4), 2006, 1663-1670.

DOI: 10.1109/tit.2006.871616

Google Scholar

[4] C. V. Chong, R. Venkataramani, and V. Tarokh, A new construction of 16-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 49(11), 2003, 2953-2959.

DOI: 10.1109/tit.2003.818418

Google Scholar

[5] Y. Li, Comment on ``A new construction of 16-QAM Golay complementary sequences" and extension for 64-QAM Golay sequences, IEEE Trans. Inf. Theory, 54(7), 2008, 246-3251.

DOI: 10.1109/tit.2008.924735

Google Scholar

[6] Y. Li, A construction of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56(11), 2010, 5765-5771.

DOI: 10.1109/tit.2010.2070151

Google Scholar

[7] C. RoBing and V. Tarokh, A construction of OFDM 16-QAM sequences having low peak powers, IEEE Trans. on Inf. Theory, 47(5), 2001, 2091-(2094).

DOI: 10.1109/18.930949

Google Scholar

[8] V. Tarokh and R. Sadjadpour, Construction of OFDM M-QAM sequences with low peak-to-average power ratio, IEEE Trans. Commun., 51(1), 2005, 25-28.

DOI: 10.1109/tcomm.2002.807618

Google Scholar

[9] F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, 16-QAM Golay, periodic and Z- complementary sequence sets, IEICE Trans. Fundamentals, E95-A(11), 2012, 2084-(2089).

DOI: 10.1587/transfun.e95.a.2084

Google Scholar

[10] F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, Almost perfect sequences and periodic complementary sequence pairs over the 16-QAM constellation, IEICE Trans. Fundamentals, E95-A(1), 2012, 400-405.

DOI: 10.1587/transfun.e95.a.400

Google Scholar

[11] F. X. Zeng, X. P. Zeng, X. Y. Zeng, Z. Y. Zhang, and G. X. Xuan, New constructions of 16-QAM periodic complementary sequences, IEEE Commun. Lett., 15(12), 2012, 2040-(2043).

DOI: 10.1109/lcomm.2012.102612.121679

Google Scholar

[12] F. X. Zeng, X. P. Zeng, L. N. Xiao, Z. Y. Zhang, and G. X. Xuan, 16-QAM periodic complementary sequence mates based on interleaving technique and quadriphase periodic complementary sequence mates, J. Commun. Netw., 15(6), 2013, 581-588.

DOI: 10.1109/jcn.2013.000107

Google Scholar

[13] F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, 16-QAM Golay complementary sequence sets with arbitrary lengths, IEEE Commun, Lett., 16(6). 2013, 1216-1219.

DOI: 10.1109/lcomm.2013.042313.130148

Google Scholar

[14] Z. L. Liu, Y. Li, and Y. L. Guan, New constructions of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 59(11), 2013, 7684-7692.

DOI: 10.1109/tit.2013.2278178

Google Scholar

[15] F. X. Zeng, X. P. Zeng, and Z. Y. Zhang, Novel 16-QAM complementary sequences, IEICE Trans. Fundamentals, E97-A(7), (2014).

DOI: 10.1587/transfun.e97.a.1631

Google Scholar

[16] W. P. Ma, C. Yang and S. H. Sun. New methods to construct Golay complementary sequences over the QAM constellation, 2010, https: /eprint. iacr. org/2010/185. pdf.

Google Scholar

[17] X. Liu and C. Sethumadhvavn. Method and apparatus for transmitting high-level QAM optical signals with binary drive signals, Appl. No. 13/340, 916, US patant, July (2013).

Google Scholar

[18] S. Litsyn. Peak power control in multi-carrier communications, Cambridge University Press, (2007).

Google Scholar

[19] J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory, 45(7), 1999, 2397-2417.

DOI: 10.1109/18.796380

Google Scholar