[1]
M. Anand and P. V. Kumar. Low-correlation sequences over the QAM constellation, IEEE Trans. Inf. Theory, 54(4), 2008, 791-810.
DOI: 10.1109/tit.2007.913512
Google Scholar
[2]
C Y. Chang, Y. Li, and J. Hirata, New 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56 (5), 2010, 2479-2485.
DOI: 10.1109/tit.2010.2043871
Google Scholar
[3]
H. Lee and S. H. Golomb, A new construction of 64-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 52(4), 2006, 1663-1670.
DOI: 10.1109/tit.2006.871616
Google Scholar
[4]
C. V. Chong, R. Venkataramani, and V. Tarokh, A new construction of 16-QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 49(11), 2003, 2953-2959.
DOI: 10.1109/tit.2003.818418
Google Scholar
[5]
Y. Li, Comment on ``A new construction of 16-QAM Golay complementary sequences" and extension for 64-QAM Golay sequences, IEEE Trans. Inf. Theory, 54(7), 2008, 246-3251.
DOI: 10.1109/tit.2008.924735
Google Scholar
[6]
Y. Li, A construction of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 56(11), 2010, 5765-5771.
DOI: 10.1109/tit.2010.2070151
Google Scholar
[7]
C. RoBing and V. Tarokh, A construction of OFDM 16-QAM sequences having low peak powers, IEEE Trans. on Inf. Theory, 47(5), 2001, 2091-(2094).
DOI: 10.1109/18.930949
Google Scholar
[8]
V. Tarokh and R. Sadjadpour, Construction of OFDM M-QAM sequences with low peak-to-average power ratio, IEEE Trans. Commun., 51(1), 2005, 25-28.
DOI: 10.1109/tcomm.2002.807618
Google Scholar
[9]
F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, 16-QAM Golay, periodic and Z- complementary sequence sets, IEICE Trans. Fundamentals, E95-A(11), 2012, 2084-(2089).
DOI: 10.1587/transfun.e95.a.2084
Google Scholar
[10]
F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, Almost perfect sequences and periodic complementary sequence pairs over the 16-QAM constellation, IEICE Trans. Fundamentals, E95-A(1), 2012, 400-405.
DOI: 10.1587/transfun.e95.a.400
Google Scholar
[11]
F. X. Zeng, X. P. Zeng, X. Y. Zeng, Z. Y. Zhang, and G. X. Xuan, New constructions of 16-QAM periodic complementary sequences, IEEE Commun. Lett., 15(12), 2012, 2040-(2043).
DOI: 10.1109/lcomm.2012.102612.121679
Google Scholar
[12]
F. X. Zeng, X. P. Zeng, L. N. Xiao, Z. Y. Zhang, and G. X. Xuan, 16-QAM periodic complementary sequence mates based on interleaving technique and quadriphase periodic complementary sequence mates, J. Commun. Netw., 15(6), 2013, 581-588.
DOI: 10.1109/jcn.2013.000107
Google Scholar
[13]
F. X. Zeng, X. P. Zeng, Z. Y. Zhang, and G. X. Xuan, 16-QAM Golay complementary sequence sets with arbitrary lengths, IEEE Commun, Lett., 16(6). 2013, 1216-1219.
DOI: 10.1109/lcomm.2013.042313.130148
Google Scholar
[14]
Z. L. Liu, Y. Li, and Y. L. Guan, New constructions of general QAM Golay complementary sequences, IEEE Trans. Inf. Theory, 59(11), 2013, 7684-7692.
DOI: 10.1109/tit.2013.2278178
Google Scholar
[15]
F. X. Zeng, X. P. Zeng, and Z. Y. Zhang, Novel 16-QAM complementary sequences, IEICE Trans. Fundamentals, E97-A(7), (2014).
DOI: 10.1587/transfun.e97.a.1631
Google Scholar
[16]
W. P. Ma, C. Yang and S. H. Sun. New methods to construct Golay complementary sequences over the QAM constellation, 2010, https: /eprint. iacr. org/2010/185. pdf.
Google Scholar
[17]
X. Liu and C. Sethumadhvavn. Method and apparatus for transmitting high-level QAM optical signals with binary drive signals, Appl. No. 13/340, 916, US patant, July (2013).
Google Scholar
[18]
S. Litsyn. Peak power control in multi-carrier communications, Cambridge University Press, (2007).
Google Scholar
[19]
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory, 45(7), 1999, 2397-2417.
DOI: 10.1109/18.796380
Google Scholar