[1]
N.N. Liu Y.P. Tan, View Invariant Gait Recognition, in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2010, p.1410–1413.
DOI: 10.1109/icassp.2010.5495466
Google Scholar
[2]
M. Goffredo et al., Self-calibrating view-invariant gait biometrics, IEEE Trans. Syst., Man, Cybern. B, vol. 40, no. 4, p.997–1008, (2010).
DOI: 10.1109/tsmcb.2009.2031091
Google Scholar
[3]
W. Kusakunniran et al., Support vector regression for multi-view gait recognition based on local motion feature selection, in IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, 2010, p.974–981.
DOI: 10.1109/cvpr.2010.5540113
Google Scholar
[4]
N. Liu, J. Lu, and Y.P. Tan, Joint Subspace Learning for View-Invariant Gait Recognition, IEEE Signal Processing Letters, vol. 18, pp.431-434, (2011).
DOI: 10.1109/lsp.2011.2157143
Google Scholar
[5]
R. Bodor et al., View-independent human motion classification using image-based reconstruction, Image Vis. Comput., vol. 27, no. 8, p.1194–1206, (2009).
DOI: 10.1016/j.imavis.2008.11.008
Google Scholar
[6]
I. Bouchrika and M.S. Nixon, Model-Based Feature Extraction for Gait Analysis and Recognition, Lecture Notes in Computer Science, vol. 4418, pp.150-160, (2007).
DOI: 10.1007/978-3-540-71457-6_14
Google Scholar
[7]
X. Chen and T. Yang, Extraction Method of Gait Feature Based on Human Centroid Trajectory, Proceedings of the 2013 International Conference on Computer Engineering and Network (CENet2013), vol. 277, pp.515-523, (2014).
DOI: 10.1007/978-3-319-01766-2_59
Google Scholar
[8]
W. Kusakunniran, Q. Wu, J. Zhang, H. Li , Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron, Pattern Recognition Letters, vol. 33, pp.882-889, (2012).
DOI: 10.1016/j.patrec.2011.04.014
Google Scholar
[9]
G. Shakhnarovich, L. Lee, and T. Darrell, Integrated face and gait recognition from multiple views, in IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, 2001, p.439–446.
DOI: 10.1109/cvpr.2001.990508
Google Scholar
[10]
W. Kusakunniran,Q. Wu, A New View-Invariant Feature for Cross-View Gait Recognition, IEEE Transactions on Information Forensics and Security, vol. 8, SI, pp.1642-1653, (2013).
DOI: 10.1109/tifs.2013.2252342
Google Scholar
[11]
H.F. Hu, Enhanced Gabor Feature Based Classification Using a Regularized Locally Tensor Discriminant Model for Multiview Gait Recognition, IEEE Transcations on Circuits and Systerms for Video Technology, vol. 23, no. 7, pp.1274-1286, Jul (2013).
DOI: 10.1109/tcsvt.2013.2242640
Google Scholar
[12]
M. Goffredo et al., Self-calibrating view-invariant gait biometrics, IEEE Trans. Syst., Man, Cybern. B, vol. 40, no. 4, p.997–1008, (2010).
DOI: 10.1109/tsmcb.2009.2031091
Google Scholar
[13]
J. Lu and Y. Tan, Uncorrelated discriminant simplex analysis for view-invariant gait signal computing, Pattern Recognit. Lett., vol. 31, no. 5, p.382–393, (2010).
DOI: 10.1016/j.patrec.2009.11.006
Google Scholar