[1]
R. H. Luppold. G. W. Gallops, L. J. Kerr, J. R. Roman and etal. Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts (1989), p. AIAA-89-2584.
DOI: 10.2514/6.1989-2584
Google Scholar
[2]
Y. Zhao, J. Sun: Recursive reduced least squares support vector regression. Pattern Recognition 42 (2009), p.837.
DOI: 10.1016/j.patcog.2008.09.028
Google Scholar
[3]
Y. -J. Lee, O. L. Mangasarian. RSVM: reduced support vector machines. Proceedings of 1st SIAM International Conference on Data Mining, (2001), p.1.
DOI: 10.1137/1.9781611972719.13
Google Scholar
[4]
K. M. Lin, C. J. Lin. A study on reduced support vector machines, IEEE Trans. Nucl. Sci. 14(6) (2003), p.1449.
Google Scholar
[5]
Y. J. Lee, S. Y. Huang. Reduced support vector machines: a statistical theory. IEEE Trans. Nucl. Sci., 18(1) (2007), p.1.
Google Scholar
[6]
I. Guyon, J. Weston, S. Barnhill, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3) (2002), p.389.
Google Scholar
[7]
X. Zhou, K. Z. Mao. LS bound based gene selection for DNA microarray data. Bioinformatics, 21(8) (2005), p.1559.
DOI: 10.1093/bioinformatics/bti216
Google Scholar
[8]
E. K. Tang, P. Suganthan, X. Yao. Gene selection for microarray data based on least squares support vector machine. BMC Bioinformatics, 7(95) (2006), p.1471.
DOI: 10.1186/1471-2105-7-95
Google Scholar
[9]
Ojeda F, Suykens J A K, Moor B D. Low rank updated LS-SVM classifiers for fast variable selection. Neural Networks, 12 (2008), p.437.
DOI: 10.1016/j.neunet.2007.12.053
Google Scholar
[10]
M. Maggiore, R. Ordonez, K. M. Passino, S. Adibhatla. Estimator design in jet engine applications. Engineering Applications of Artificial Intelligence, 16(7-8) (2003), p.579.
DOI: 10.1016/j.engappai.2003.10.003
Google Scholar