Microstructure Evolution Characteristics during Rapid Solidification of Ca-Mg Alloys with Different Mg Contents

Article Preview

Abstract:

The molecular dynamics simulation studies on the microstructure evolution properties of liquid Ca-Mg alloys during the rapid solidifications have been performed. The simulated structure factor S(q) of Ca7Mg3 is well agreed with the experimental data. Results indicate that the glass transition temperatures of CaMg2 and Ca7Mg3 are 590 K and 550 K respectively with the cooling rate of 1×1012 K/s. It also found that icosahedron is much easier to form in CaMg2 system, and Ca-Mg alloys with more Mg content indicate higher glass forming ability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-255

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J Walker, S Shadanbaz, TBF Woodfield, MP Staiger, GJ Dias. 2014. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J Biomed Mater Res Part B 2014: 00B: 001–016.

DOI: 10.1002/jbm.b.33113

Google Scholar

[2] R. Zeng, W. Dietzel, F. Witte, N. Hort and C. Blawert: Advanced Engineering Materials Vol 10 (2008): P. B3-B14.

DOI: 10.1002/adem.200800035

Google Scholar

[3] Z. J. Li, X. N. Gu, S. Q. Lou and Y. F. Zheng: Biomaterial Vol 29 (2008): P. 1329-1344.

Google Scholar

[4] Z. Y. Hou, L. X. Liu, R. S. Liu, Z. A. Tian and J. G. Wang: J. Appl. Phys. Vol 107 (2010): P. 083511-083517.

Google Scholar

[5] D. W. Qi and S. Wang: Phys. Rev. B. Vol 44 (1991): P. 884-887.

Google Scholar

[6] F. X. Liu, R. S. Liu, Z. Y. Hou, H. R. Liu, Z. A. Tian and L. L. Zhou: Ann. Physics. Vol 324 (2009): P. 332-342.

Google Scholar

[7] S. Wang and S. K. Lai: J. Phys. F: Metal. Phys. Vol 10 (1980): P. 2717-2737.

Google Scholar

[8] D. H. Li, X. R. Li and S. Wang: J. Phys. F: Metal. Phys. Vol 16 (1986): P. 309-321.

Google Scholar

[9] W. G. Hoover, A. J. C. Ladd and B. Moran: Phys. Rev. Lett. Vol 48 (1982): P. 1818-1820.

Google Scholar

[10] D. J. Evans: J. Chem. Phys. Vol 78 (1983): P. 3297-3302.

Google Scholar

[11] E. Nassif, P. Lamparter and S. Steev: Z. Naturforsch Vol 38a (1983): P. 1206.

Google Scholar

[12] S. S. Jaswal and J. Hafner: Phys. Rev. B. Vol 38 (1988): P. 7311-7319.

Google Scholar

[13] K. Vollmayr, W. Kob and K. Binder: Phys. Rev. B. Vol 54 (1996): P. 15808.

Google Scholar

[14] J. G. Kim and Y. W. Kim: Materials and Corrosion Vol 52 (2001): P. 137-139.

Google Scholar

[15] W. C. Kim, J. G. Kim, J. Y. Lee and H. K. Seok: Mater. Lett. Vol 62 (2008): P. 4146-4148.

Google Scholar

[16] J. D. Honeycutt and H. C. Anderson: J. Phys. Chem. Vol 91 (1987): P. 4950-4963.

Google Scholar