Theoretical Simulation and Feasibility Analysis of the Estimation of Crop Leaf Chlorophyll Using Narrow Band NDVI

Article Preview

Abstract:

Remote sensing technology is one of the best methods for the large-scale monitoring of chlorophyll in crops. This study analyzes the feasibility of estimating the contents of chlorophyll by means of narrow band normalized difference vegetation indices (NDVInb). The reflectance of the two bands forming the NDVInb is from simulations run on the PROSPECT model. A traversal of possible combinations of NDVInb are examined from 400 nm to 800 nm. Our results indicate that, at the leaf level, estimation of chlorophyll content can be identified in NDVInb. Ranges for these bands include: 1) 720-735 nm combined with 400-428 nm; 2) 550-615 nm, 692-701 nm or 707-715 nm combined with 400-432 nm or 462-496 nm; 3) 562-589 nm, 616-662 nm or 729-737 nm combined with 434-454 nm; and 4) 664-687 nm combined with 550-615 nm or 692-701 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-322

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Haboudane, J.R. Miller, N. Tremblay, P.J. Zarco-Tejada and L. Dextraze: Remote Sensing of Environment, Vol. 81 (2002) No. 2, p.416.

DOI: 10.1016/s0034-4257(02)00018-4

Google Scholar

[2] J.B. Féret, C. François, A. Gitelson, G.P. Asner, K.M. Barry, C. Panigada, A.D. Richardson and S. Jacquemond: Remote Sensing of Environment, Vol. 115 (2011) No. 10, p.2742.

DOI: 10.1016/j.rse.2011.06.016

Google Scholar

[3] J. Zhang, A.M. Blackmer, J.W. Ellsworth and K.J. Koehler: Agronomy Journal, Vol. 100 (2008) No. 3, p.543.

Google Scholar

[4] J.H. Grove and M.M. Navarr: Precision agriculture'13 (Wageningen Academic Publishers, Netherlands 2013), p.137.

Google Scholar

[5] T.M. Blackmer and J.S. Schepers: Journal of Production Agriculture, Vol. 8 (1995) No. 1, p.56.

Google Scholar

[6] G. Farré, C. Bai, R.M. Twyman, T. Capell, P. Christou and C.F. Zhu: Trends in Plant Science, Vol. 16 (2011) No. 10, p.532.

DOI: 10.1016/j.tplants.2011.08.001

Google Scholar

[7] A.A. Gitelson, G.P. Keydan and M.N. Merzlyak: Geophysical Research Letters, Vol. 33 (2006) No. 11, p.402.

Google Scholar

[8] R. Main, M.A. Cho, R. Mathieu, M.M. Kennedy, A. Ramoelo and S. Koch: ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66 (2011) No. 6, p.751.

DOI: 10.1016/j.isprsjprs.2011.08.001

Google Scholar

[9] J.F. Huang, F.M. Wang, X.Z. Wang, Y.L. Tang and R.C. Wang: Communications in Soil Science and Plant Analysis, Vol. 35 (2004) No. 19-20, p.2689.

Google Scholar

[10] F.M. Wang, J.F. Huang, Z.Y. Liu and X.Z. Wang: Journal of Zhejiang University (Agric. & Life Sci. ), Vol. 35 (2009) No. 3, p.321. (In Chinese).

Google Scholar

[11] M. Kuester, K. Thome, K. Krause, K. Canham and E. Whittington: Geoscience and Remote Sensing Symposium (Sydney, Australia, July 9-13, 2001), Vol. 1, p.72.

Google Scholar

[12] S. Jacquemoud and F. Baret: Remote Sensing of Environment, Vol. 34 (1990) No. 2, p.75.

Google Scholar

[13] R. Houborg, M. Anderson, C. Daughtry: Remote Sensing of Environment, Vol. 113 (2009) No. 1, p.259.

Google Scholar

[14] B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini and G. Schmuck: Leaf optical properties experiment 93 (LOPEX93) report EUR-16095-EN (European Commission, Italy 1995).

Google Scholar