Resistive Gas Sensors Based on MWCNTs-PVP Composite Films

Article Preview

Abstract:

In this paper, multiple-walled carbon nanotubes (MWCNTs) monolayer film and MWCNTs-polyvinylpyrrolidone (PVP) composite films were fabricated on interdigitated electrodes (IDEs) by airbrush technology, respectively. Response performance of all the sensors to various concentrations of vapors including methanol, ethanol, acetone, tetrahydrofuran, water and 1,2-dichloroethane were investigated. The results showed that a larger sensing response was obtained for the composite films compared with the MWCNTs monolayer film. Moreover, the MWCNTs-PVP composite films had a good selectivity for 1,2-dichloroethane vapor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-87

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kai Wang and Jiyong Huang: Polyaniline nanowire arrays for high performance supercapacitors, J Phys. Chem. C 114 (2010) 8062-8067.

DOI: 10.1021/jp9113255

Google Scholar

[2] H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe: Indium oxide-based gas sensors for selective detection of CO, Sens. Actuators B 36 (1996) 325-332.

DOI: 10.1016/s0925-4005(97)80090-1

Google Scholar

[3] J. Kaur, S.C. Roy, M.C. Bhatnagar: Highly sensitive SnO2 thin film NO2 gas sensor operating at low-temperature, Sens. Actuators B 123 (2007) 1090-1095.

DOI: 10.1016/j.snb.2006.11.031

Google Scholar

[4] G. Xie, J. Yu, X. Chen, Y. Jiang: Gas sensing characteristics of WO3 vacuum deposited thin films, Sens. Actuators B 123 (2007) 909-914.

DOI: 10.1016/j.snb.2006.10.059

Google Scholar

[5] A.Macagnano: Nanofibrous PANI-based conductive polymers for trace gas analysis, Thin Solid Film 520 (2011) 978-985.

DOI: 10.1016/j.tsf.2011.04.175

Google Scholar

[6] Z. Spitalskya, D. Tasisb, K. Papagelisb, C. Galiotis: Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (2010) 357-40.

Google Scholar

[7] L. Niu, Y. Luo, Z. Li, A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene/glycol), Sens. Actuators B 126 (2007) 361-367.

DOI: 10.1016/j.snb.2007.03.018

Google Scholar

[8] J. Zou, L. Liu, H. Chen, S. Khondaker, R. McCullough, Q. Huo, and L. Zhai: Dispersion of pristine carbon nanotubes using conjugated block copolymers, Adv. Mater. 20 (2008) 2055-2060.

DOI: 10.1002/adma.200701995

Google Scholar

[9] W. Zhou, Y. Wu, F. Wei, G. Luo, W. Qian: Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers, Polymer 46 (2005) 12689-12695.

DOI: 10.1016/j.polymer.2005.10.114

Google Scholar

[10] R. Pati, Y. Zhang, S.K. Nayak: Effect of H2O adsorption on electron transport in a carbon nanotube, Appl. Phys. Lett, 81 (2002) 2638-2640.

DOI: 10.1063/1.1510969

Google Scholar

[11] G.S. Cheng, J.W. Hu: Filling polymer based conductive gas sensing composite materials, Appl. Chem. 21 (2004) 325-331.

Google Scholar

[12] P. Burg, P. Fydrych, J. Bimer: Comparison of three active carbons using LSER modeling: prediction of their selectivity towards pairs of volatile organic compounds (VOCs), Carbon 40 (2002) 73-80.

DOI: 10.1016/s0008-6223(01)00076-8

Google Scholar

[13] D. Karst, Y. Yang: Using the solubility parameter to explain disperse dye sorption on polylactide, J. Appl. Polym. Sci. 96 (2005) 416-422.

DOI: 10.1002/app.21456

Google Scholar