Steam Reforming of Ethanol by a Nickel Nanowire Catalyst

Article Preview

Abstract:

A nickel nanowire catalyst was prepared by a hard templating method, and characterized by transmission electron microscopy (TEM), N2 physical adsorption, X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD) and H2 temperature-programmed reduction (H2-TPR). The catalytic properties of the nanowire catalyst in the ethanol steam reforming were compared with a metallic Ni catalyst which was prepared with nickel sponge. The characterization results showed that the nickel nanowire catalyst had high specific surface area and there was more NiO phase in the nickel nanowire catalyst than in the metallic Ni catalyst. The reaction results showed that the nickel nanowire catalyst had higher ethanol conversion and hydrogen yield than the metallic Ni catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-102

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Das and T. N. Veziroglu, Int. J. Hydrogen Energy, 26, 13(2001).

Google Scholar

[2] M. A. Goula, S. K. Kontou and P. Tsiakaras, Appl. Catal., B: Environ., 49, 135(2004).

Google Scholar

[3] C. Wu, F. Wu, Y. Bai, Y. Liu and J. Sun, Presented at the International Conference on Control and Automation, Guangzhou, June 30, (2007).

Google Scholar

[4] A. Vinci, V. Chiodo, K. Papageridis, S. Cavallaro, S. Freni, P. Tsiakaras and J. C. J. Bart, Energy&Fuels, 27, 1570(2013).

DOI: 10.1021/ef302037p

Google Scholar

[5] S. Cavallaro, Energy&Fuels, 14, 1195(2000).

Google Scholar

[6] J. Comas, F. Marino, M. Laborde and N. Amadeo, Chem. Eng. J, 98, 61(2004).

Google Scholar

[7] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. D. Blasi, G. Bonura and S. Cavallaro, Appl. Catal., A, 270, 30(2004).

Google Scholar

[8] S. Freni, S. Cavallaro, N. Mondello, L. Spadaro and F. Frusteri, Catal. Commun., 4, 259(2003).

Google Scholar

[9] X. B. Hong, JNGC, 2, 247(2009).

Google Scholar

[10] F. Kleitz, S. H. Choi and R. Ryoo, Chem. Commun., 17, 2136(2003).

Google Scholar

[11] T. W. Kim, F. Kleitz, B. Paul and R. Ryoo, J. Am. Chem. Soc., 127, 7601(2005).

Google Scholar

[12] Y. H. Li, Y. Q. Wang, X. B. Hong, Z. G. Zhang, Z. P. Fang, Y. Pan, Y. B. Lu and Z. Q. Han, AIChE J., 52, 4276(2006).

Google Scholar

[13] T. W. Kang, Y. G. Park and J. H. Yi, J. Mol. Catal. A, 244, 151(2006).

Google Scholar

[14] M. K. Dongare, K. Malshe, C. S. Gopinath, I. K. Murwani and E. Kemnitz, J. Catal., 222, 80(2004).

Google Scholar

[15] D. A. Hickman and L. D. Schmidt, AIChE J., 39, 1164(1993).

Google Scholar

[16] M. Labaki, S. Siffert, J. F. Lamonier, E. A. Zhilinskaya and A. Aboukais, Appl. Catal., B: Environ., 43, 261(2003).

Google Scholar

[17] J. J. Zhu, S. Albertsma, J .G. van Ommen and L. Lefferts, J. Phys. Chem. B, 109, 9550(2005).

Google Scholar

[18] C. Y. Li, Y. N. Shen, M. L. Jia, S. S. Sheng, M. O. Adebajo and H. Y. Zhu, Catal. Commun., 9, 355(2008).

Google Scholar

[19] J. V. Durme, J. Dewulf, C. Leys and H. V. Langenhove, Appl. Catal., B: Environ., 74 324(2008).

Google Scholar

[20] S. Ozkar and M. Zahmakiran, J. Alloys. Compd., 404, 728(2005).

Google Scholar