[1]
A. K. Dey: Understanding and using context, Personal and ubiquitous computing, vol. 5, no. 1, pp.4-7, (2001).
Google Scholar
[2]
J. J. Aucouturier, Y. Nonaka, K. Katahira and K. Okanoya: Segmentation of expiratory and inspiratory sounds in baby cry audio recordings using hidden Markov models, J. Acoust. Soc. Amer, vol. 130, no. 5, pp.2969-2977, (2011).
DOI: 10.1121/1.3641377
Google Scholar
[3]
J. Pineau, M. Montemerlo, M. Pollack, N. Roy and S. Thrun: Towards robotic assistants in nursing homes: Challenges and results, Special Iss. Socially Interactive Robots, Robot., Autonomous Syst., vol. 42, no. 3-4, pp.271-281, (2003).
DOI: 10.1016/s0921-8890(02)00381-0
Google Scholar
[4]
A. Kalmbach, Y. Girdhar and G. Dudek: Unsupervised Environment Recognition and Modeling using Sound Sensing, in Proc. Robotics and Automation, (2013), pp.2699-2704.
DOI: 10.1109/icra.2013.6630948
Google Scholar
[5]
S. Chu, S. Narayanan, C. -C. J. Kuo and M. J. Mataric: Where am I? Scene recognition for mobile robots using audio features, in Proc. ICME, (2006), pp.885-888.
DOI: 10.1109/icme.2006.262661
Google Scholar
[6]
T. Heittola, A. Mesaros, A. Eronen and T. Virtanen: Context-dependent sound event detection, EURASIP Journal on Audio, Speech, and Music Processing, (2013), doi: 10. 1186/1687-4722-2013-1.
DOI: 10.1186/1687-4722-2013-1
Google Scholar
[7]
R. Cai, L. Lu, A. Hanjalic, H. Zhang and L. -H. Cai: A flexible framework for key audio effects detection and auditory context inference, IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 3, pp.1026-1039, (2006).
DOI: 10.1109/tsa.2005.857575
Google Scholar
[8]
R. Cai, L. Lu and A. Hanjalic: Co-clustering for auditory scene categorization, IEEE Trans. on Multimedia, vol. 18, no. 6, pp.596-606, (2008).
DOI: 10.1109/tmm.2008.921739
Google Scholar
[9]
A. J. Eronen, V. T. Peltonen, J. T. Tuomi, A. P. Klapuri, S. Fagerlund, T. Sorsa, G. Lorho and J. Huopaniemi: Audio-Based context recognition, IEEE Trans. on Audio, Speech, and Language Processing, vol. 14, no. 1, pp.321-329, (2006).
DOI: 10.1109/tsa.2005.854103
Google Scholar
[10]
L. Ma, B. Milner and D. Smith: Acoustic environment classification, ACM Trans. Speech Lang. Process., vol. 3, no. 2, pp.1-22, (2006).
DOI: 10.1145/1149290.1149292
Google Scholar
[11]
S. Chu, S. Narayanan and C. -C. Jay Kuo: Environmental sound recognition with time-frequency audio features, IEEE Trans. on Audio, Speech, and Language Processing, vol. 17, no. 6, pp.1142-1158, (2009).
DOI: 10.1109/tasl.2009.2017438
Google Scholar
[12]
R. Mogi and H. Kasai: Noise-robust environmental sound classification method based on combination of ICA and MP features, Artificial Intelligence Research, vol. 2, no. 1, pp.107-121, (2013).
DOI: 10.5430/air.v2n1p107
Google Scholar
[13]
S. -W Deng, J. -Q Han, C. -Z Zhang, T. -R Zheng and G. -B Zheng: Robust minimum statistics project coefficients feature for acoustic environment recognition, in Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), (2014).
DOI: 10.1109/icassp.2014.6855206
Google Scholar
[14]
B. V. Srinivasan, Y. -C. Luo, G. -R. Daniel, D. N. Zotkin and R. Duraiswami: A symmetric kernel partial least squares framework for speaker recognition, IEEE Transactions on Audio, Speech and Language Processing, vol. 21, no. 7, pp.1415-1423, (2013).
DOI: 10.1109/tasl.2013.2253096
Google Scholar
[15]
Q. Wang, F. Chen, Xu W and M. H. Yang: Object tracking via partial least squares analysis, IEEE Transactions on Image Processing, vol. 21, no. 10, pp.4454-4465, (2012).
DOI: 10.1109/tip.2012.2205700
Google Scholar
[16]
R. Martin: Noise power spectral density estimation based on optimal smoothing and minimum statistics, IEEE Trans. on Speech and Audio Processing, vol. 9, no. 5, pp.504-512, (2001).
DOI: 10.1109/89.928915
Google Scholar
[17]
A. Hoskuldsson: PLS regression methods, Journal of Chemometrics, vol. 2, pp.211-228, (1988).
Google Scholar
[18]
Online free sound resource on http: /www. freesound. org.
Google Scholar