[1]
E. Ioannides, G. Bergling, and A. Gabelli, An Analytical Formulation for the Life of Rolling Bearings, Acta Polytechnica Scandinavica, Me, 137, (1999), 1-80.
Google Scholar
[2]
ISO /TS 16281: 2008(E), Rolling Bearings - Methods for Calculating the Modified Reference Rating Life for Universally Loaded Bearings, Geneva, Switzerland.
DOI: 10.3403/30142095
Google Scholar
[3]
A. Kapoor and K. L. Johnson, Effect of Changes in Contact Geometry on Shakedown of Surfaces in Rolling/Sliding Contact, Int. J. Mech. Eng. Sci, 34, (1992), 223-239.
DOI: 10.1016/0020-7403(92)90073-p
Google Scholar
[4]
S. Creţu and E. Antalucă, The Study of Non-Hertzian Concentrated Contacts by a GC-DFFT Technique, Analele U. Galaţi, VIII, Tribology, (2003), 39-47.
Google Scholar
[5]
D. Nélias, E. Antalucă, V. Boucly and S. Creţu, A 3D Semi-Analytical Model for Elastic-Plastic Sliding Contacts, ASME J. Tribol., 129-4, (2007), 761–771.
DOI: 10.1115/1.2768076
Google Scholar
[6]
S. Cretu, Contactul Concentrat Elastic-Plastic, Polytehnium, Iasi, 2009, 317-333.
Google Scholar
[7]
J. Besson, G. Cailletaud, J. L. Chaboche and S. Forest, Non-linear mechanics of materials, Springer, 2010, 76-85.
Google Scholar
[8]
J. A. Williams, The influence of repeated loading, residual stresses and shakedown on the behavior of tribological contacts, Tribol. Int., 38, (2005), 786-797.
DOI: 10.1016/j.triboint.2005.02.006
Google Scholar