Structural and Kinematic Aspects of a New Ankle Rehabilitation Device

Article Preview

Abstract:

This paper discusses structural and kinematic aspects of a novel ankle rehabilitation device. This device will facilitate the ankle recovery, providing two types of motions: pitch and roll. The platform is design to be light weight, easy to realize and low cost (comparing to actual devices on the market). The difficulty of the exercises can be gradually increased until we reach full ankle recovery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

507-512

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Waterman, B. Owens, S. Davey, M. Zacchilli and P.J. Belmont Jr., The epidemiology of ankle sprains in the United States, The Journal of Bone & Joint Surgery, 92 (2010) 2279-2284.

DOI: 10.2106/jbjs.i.01537

Google Scholar

[2] J. Yoon, J. Ryu and K.B. Lim, A novel reconfigurable ankle rehabilitation robot for various exercises, Robotics and Automation (2005), 2290-2295.

Google Scholar

[3] M. Girone, G. Burdea, M. Bouzit, V. Popescu and J.E. Deutsch, A Stewart platform-based system for ankle telerehabilitation, Autonomous Robots, 10 (2001) 203-212.

DOI: 10.1023/a:1008938121020

Google Scholar

[4] P.K. Jamwal, S. Xie and K.C. Aw, Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm, Robotics and Autonomous Systems, 57 (2009) 1018- 1027.

DOI: 10.1016/j.robot.2009.07.017

Google Scholar

[5] P.K. Jamwal, S.Q. Xie, Y.H. Tsoi and K.C. Aw, Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference, Mechanism and Machine Theory, 45 (2010), 1537- 1554.

DOI: 10.1016/j.mechmachtheory.2010.06.017

Google Scholar

[6] S.M.M. Rahman and R. Ikeura, A novel variable impedance compact compliant ankle robot for overgroud gait rehabilitation and assistance, Procedia Engineering, 41 (2012) 522-531.

DOI: 10.1016/j.proeng.2012.07.207

Google Scholar

[7] J.W. Wheeler, An ankle robot for a modular gait rehabilitation system, IEEE/RSJ International Conference, 2 (2004) 1680-1684.

Google Scholar

[8] S. Pittaccio and S. Viscuso, An EMG- Controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke, Journal of materials engineering and performance, 20 (2011) 666-670.

DOI: 10.1007/s11665-010-9826-7

Google Scholar

[9] D.P. Ferris, K.E. Gordon, G.S. Sawicki and A. Peethambaran, An improved powered ankle-foot orthosis using proportional myoelectric control, Gait& Posture, 23 (2006) 425-428.

DOI: 10.1016/j.gaitpost.2005.05.004

Google Scholar

[10] A. Cullell, J.C. Moreno, E. Rocon, A. Forner-Cordero and J.L. Pons, Biologically based design of an actuator system for a knee-ankle-foot orthosis, Mechanism and Machine Theory, 44 (2009), 860-872.

DOI: 10.1016/j.mechmachtheory.2008.04.001

Google Scholar

[11] I.M. Babes (Petre) and I. Deaconescu, Research concerning pneumatic muscle actuated rehabilitation equipment of bearing joints, Dissertation, , Transilvania" University of Brasov, (2012).

Google Scholar

[12] A. Agrawal, S. K. Banala, S. K. Agrawal and S.A. Binder –Macleod, Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation, International Conference on Rehabilitation Robotics, 9 (2005) 41-44.

DOI: 10.1109/icorr.2005.1501047

Google Scholar

[13] A. Patar, N. Jamlus, K. Makhtar, J. Mahmud and T. Komeda, Development of dynamic ankle foot orthosis for therapeutic application, Procedia Engineering, 41 (2012) 1432-1440.

DOI: 10.1016/j.proeng.2012.07.332

Google Scholar

[14] H. Lee, P. Ho, M. A. Rastgaar, H.I. Kregbs and N. Hogan, Multivariable static ankle mechanical impedance with relaxed muscles, Journal of Biomechanics, 44 (2011) 1901-(1908).

DOI: 10.1016/j.jbiomech.2011.04.028

Google Scholar

[15] H. Kazerooni, J.L. Racine, L. Huang and R. Steger, On the control of the Berkeley lower extremity exoskeleton (BLEEX), International Conference on Robotics and Automation, 2005, pp.4353-4360.

DOI: 10.1109/robot.2005.1570790

Google Scholar

[16] S.K. Banala, S. Hun Kim, S.K. Agrawal and J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), Neural Systems and Rehabilitation Engineering, 1 (2009) 2-8.

DOI: 10.1109/tnsre.2008.2008280

Google Scholar

[17] J.F. Venema, R. Kruidof, E.E.G. Hekman, R. Ekkelenkamp, E.H.F. Van Asseldonk and H. van der Hooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, Neural Systems and Rehabilitation Engineering, 3 (2007).

DOI: 10.1109/tnsre.2007.903919

Google Scholar

[18] A. -M. Amancea, I. Doroftei, A. Barnea, F. Adascalitei, Design and Implementation of a Mechatronic System for Lower Limb Medical Rehabilitation, International Journal of Modern Manufacturing Technologies, 4: 2 (2012) 17-22.

Google Scholar

[19] A. -M. Amancea, I. Doroftei, A. Barnea, B. Bou-Said, Real-Time Monitoring of the Patient Recuperative Progress Using a New Lower Limb Rehabilitation System, Robotica & Management, 17: 2 (2012) 5-10.

Google Scholar