[1]
K.W. Kim, W.Y. Lee, H.C. Sin: A finite element analysis of machining with the tool edge considered [J]. Journal of Materials Processing Technology, Vol. 86 (1999), pp.45-55.
DOI: 10.1016/s0924-0136(98)00230-1
Google Scholar
[2]
Y.C. Yen, A. Jain, T. Altan: A finite element analysis of orthogonal machining using different tool edge geometries [J]. Journal of Materials Processing Technology, Vol. 146 (2004), pp.72-81.
DOI: 10.1016/s0924-0136(03)00846-x
Google Scholar
[3]
Bakerm R , Osler J , Siemers C: A finite element model of high speed metal cutting with adiabatic shearing [J]. Computers and Structures , Vol. 80 (5) (2002), pp.495-513.
DOI: 10.1016/s0045-7949(02)00023-8
Google Scholar
[4]
WU Hong-bing, JIA Zhi-xin: Finite element modeling of Ti6Al4V alloy high speed cutting [J]. Journal of Zhejiang University (Engineering Science), Vol. 44(5) (2010), pp.982-987.
Google Scholar
[5]
YANG Yong, KE Ying-lin, DONG Hui-yue: Finite Element Simulation of High-Speed Cutting [J]. Acta aeronautica et astronautica sinica, Vol. 27(3) (2006), pp.531-535.
Google Scholar
[6]
Fang Gang, Zeng Pan: FEM Simulation of Orthogonal Metal Cutting Process [J]. Mechanical science and technology, Vol. 22(4) (2003), pp.641-645.
Google Scholar
[7]
M.R. Movahhedy, M.S. Gadala, Y. Altintas: Simulation of the orthogonal cutting process using an Arbitrary Lagrangian-Eulerian finite-element method [J]. Journal of Materials Processing Technology, Vol. 103 (2000), pp.267-275.
DOI: 10.1016/s0924-0136(00)00480-5
Google Scholar
[8]
Nasr MNA, Ng E-G, Elbestawi MA: Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. International Journal of Machine Tools and Manufacture, Vol. 47(2) (2007), pp.401-411.
DOI: 10.1016/j.ijmachtools.2006.03.004
Google Scholar
[9]
Ozel T, Zeren E: Finite element analysis of the influence of edge roundness on the stress and temperature fields induced by high speed machining. International Journal of Advanced Manufacturing Technology, Vol. 35(3-4) (2007), pp.255-267.
DOI: 10.1007/s00170-006-0720-2
Google Scholar
[10]
Miguelez H., Zaera, R. Molinari A., Cheriguene R., Rusinek A: Residual stresses in orthogonal cutting of metals: the effect of thermomechanical coupling parameters and of friction [J], Journal of Thermal Stresses, Vol. 32 (2009), pp.1-20.
DOI: 10.1080/01495730802637134
Google Scholar
[11]
Fang, N: A comparative study of the cutting forces in high speed machining of Ti6Al4V and Inconel 718 with a round cutting edge tool [J],Journal of Materials Processing Technology, Vol. 209 (2009), pp.4385-4389.
DOI: 10.1016/j.jmatprotec.2008.10.013
Google Scholar
[12]
Meyer, H.W., Kleponis, D. S: Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration[J], Int. J. Impact Eng. Vol. 26 (2001), pp.509-521.
DOI: 10.1016/s0734-743x(01)00107-5
Google Scholar
[13]
Fang, N: Slip-line modeling of machining with a rounded-edge tool, part I: new model and theory [J]. J. Mech. Phys. Solids, Vol. 51 (2003), pp.715-742.
DOI: 10.1016/s0022-5096(02)00060-1
Google Scholar
[14]
Liu K, Melkote SN: Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. International Journal of Mechanical Sciences Vol. 49(5) (2007), pp.650-660.
DOI: 10.1016/j.ijmecsci.2006.09.012
Google Scholar