Effect of Nano-Al2O3 Particles on the NiP/nano-Al2O3 Coatings’ Properties

Article Preview

Abstract:

Composite coatings were prepared using electroless nickel bath containing different concentrations of Al2O3 nano-particles. The analyses of coating compositions, carried out by EDS, showed that there is marginal difference between phosphorus contents of NiP and NiP/nano-Al2O3 deposits. The structure of the coatings was examined by scanning electron microscopy (SEM), and X-ray diffraction (XRD). It has been found that the co-deposition of nano-Al2O3 particles with Ni disturbs the NiP coating’s regular surface structure and increases its surface roughness. DC and AC electrochemical tests were carried out on such coatings in a 3.5wt.% solution of NaCl in order to evaluate their corrosion resistance. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests both showed that, the corrosion resistance of NiP-Al2O3 coatings firstly increases and then decreases when Al2O3 concentration in electroless bath is increasing, but the corrosion resistance of NiP-Al2O3 composite coating is better than that of amorphous NiP coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1668-1675

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.H. Jeong, U. Erb and K.T. Aust: Scripta. Mater. Vol. 48 (2003), p.1067.

Google Scholar

[2] Y.D. He, H.F. Fu and X.G. Lia: Scripta. Mater. Vol. 58 (2008), p.504.

Google Scholar

[3] J.N. Balaraju, T.S.N. Sankara Narayanan and S.K. Seshadri: J. Appl. Electrochem. Vol. 33 (2003), p.807.

Google Scholar

[4] A. Grosjean, M. Rezrazi and J. Takadoum: Surf. Coat. Technol. Vol. 137 (2001), p.92.

Google Scholar

[5] M.R. Kalantary, K.A. Holbrook and P.B. Wells: Trans. Inst. Met. Finish. Vol. 71 (1993), p.55.

Google Scholar

[6] N.V. Mandich and J.K. Dennis: Met. Finish. Vol. 99 (2001), p.117.

Google Scholar

[7] M. Sarret, C. Müller and A. Amell: Surf. Coat. Technol. Vol. 201 (2006), p.389.

Google Scholar

[8] J.Q. Gao, L. Liu and Y.T. Wu: Surf. Coat. Technol. Vol. 200 (2006), p.5836.

Google Scholar

[9] X.H. Jie, X. Cheng and G.H. Lu: Heat Treat. Met. (in Chinese) Vol. 32 (2007) p.51.

Google Scholar

[10] H.H. Kung, H.H. Wen and T.K. Shih: Mater. Chem. Phys. Vol. 100 (2006), p.54.

Google Scholar

[11] C.J. Lin, K.C. Chen, and J.L. He: Wear Vol. 261 (2006), p.1390.

Google Scholar

[12] C.C. Min, D.G. Ming and T.K. Shih: Mater. Chem. Phys. Vol. 92 (2005), p.146.

Google Scholar

[13] C.F. Malfatti, H.M. Veit and T.L. Menezes: Surf. Coat. Technol. Vol. 201 (2007), p.6318.

Google Scholar

[14] Y.D. Chen, X.H. Jie, and G.H. Lu: Mater. Prot. (in Chinese) Vol. 39 (2006), p.11.

Google Scholar

[15] C.F. Malfatti, F.J. Zoppas and C.B. Sontos: Corros. Sci. Vol. 47 (2005), p.567.

Google Scholar

[16] J. Li and B.Y. Jiang: Corros. Prot. (in Chinese) Vol. 26 (2005), p.326.

Google Scholar

[17] B.A. Boukamp: J. Electrochem. Soc. Vol. 142 (1995), p.1885.

Google Scholar

[18] M. Stern and A.L. Geary: J. Electrochem. Soc. Vol. 104 (1957), p.56.

Google Scholar

[19] J. N. Balaraju and K. S. Rajam: Int. J. Electrochem. Sci. Vol. 2 (2007), p.747.

Google Scholar

[20] R.B. Diegle, N.R. Sorensen, C.R. Clayton, M.A. Helfand and Y.C. Yu: J. Electrochem. Soc. Vol. 135 (1988), p.1085.

Google Scholar

[21] J.L. Carbajal and R.E. White: J. Electrochem. Soc. Vol. 135 (1988), p.2952.

Google Scholar

[22] H. Habazaki, S.Q. Deng, A. Kashima, K. Asami, K. Hashimoto, A. Inoue and T. Masumoto: Corros. Sci. Vol. 29 (1989), p.1319.

Google Scholar