[1]
S.E. Pinto, S.L. Lopes and R.L. Viana: Collective behavior in a chain of Van der Pol oscillators with power-law coupling, Physica A, Vol. 303 (2002), 339-356.
DOI: 10.1016/s0378-4371(01)00549-0
Google Scholar
[2]
L. Zhang and S.Y. Liu: Stability and pattern formation in a coupled arbitrary order of autocatalysis system, Appl. Math. Model., Vol. 33 (2009), 884-896.
DOI: 10.1016/j.apm.2007.12.013
Google Scholar
[3]
M.H. Eissa, U.H. Hegazy and Y.A. Amer: Dynamic behavior of an AMB supported rotor subject to harmonic excitation, Appl. Math. Model., Vol. 32 (2008), 1370-1380.
DOI: 10.1016/j.apm.2007.04.005
Google Scholar
[4]
H.G. Winful and L. Rahman: Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers, Phys. Rev. Lett., Vol. 65 (1990), 1575-1578.
DOI: 10.1103/physrevlett.65.1575
Google Scholar
[5]
S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa: Self-synchronization in coupled salt-water oscillators, Physica D, Vol. 115 (1998), 313-320.
DOI: 10.1016/s0167-2789(97)00240-6
Google Scholar
[6]
I. Belykh, V. Belykh and M. Hasler: Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, Vol. 195 (2004), 188-206.
DOI: 10.1016/j.physd.2004.03.013
Google Scholar
[7]
X.Y. Li, J.C. Ji and C.H. Hansen: Dynamics of two delay coupled van der Pol oscillators, Mech. Res. Commun., Vol. 33 (2006), 614-627.
DOI: 10.1016/j.mechrescom.2005.09.009
Google Scholar
[8]
J.M. Zhang and X. S. Gu: Stability and bifurcation analysis in the delay-coupled van der Pol oscillators, Appl. Math. Model., Vol. 34 (2010), 2291-2299.
DOI: 10.1016/j.apm.2009.10.037
Google Scholar
[9]
K. Rompala, R. Rand, H. Howland: Dynamics of three coupled van der Pol oscillators with application to circadian rhythms, Commun. Nonlinear Sci. Numer. Simul., Vol. 12 (2007), 794-803.
DOI: 10.1016/j.cnsns.2005.08.002
Google Scholar
[10]
S.Z. Zou, L.H. Huang and Y.N. Wang: Bifurcation of a three-unit neural network, Applied Mathematics and Computation, Vol. 217 (2010), 904-917.
DOI: 10.1016/j.amc.2010.06.034
Google Scholar
[11]
T. Mashima and H. Kawakami: Bifurcation of equilibrium points and synchronized periodic solution in four coupled oscillators, International Symposium on Nonlinear Theory and its Application, Vol. 29 (1997), 141-144.
Google Scholar
[12]
H.G. Enjieu Kadji, J.B. Chabi Orou and P. Woafo: Synchronization dynamics in a ring of four mutually coupled biological systems, Commun. Nonlinear Sci. Numer. Simul., Vol. 13 (2008), 1361-1372.
DOI: 10.1016/j.cnsns.2006.11.004
Google Scholar
[13]
J. Blair, S. J. Campbell and V. D. Driessche: Frustration, stability and delay-induced oscillations in a neural network model, SIAM J. Appl. Math., Vol. 56 (1996), 245-255.
DOI: 10.1137/s0036139994274526
Google Scholar
[14]
O. Arino and I. Gyori: Necessary and sufficient condition for the oscillation of neutral differential system with several delays, J. Diff. Eqns., Vol. 81 (1989), 98-105.
DOI: 10.1016/0022-0396(89)90179-4
Google Scholar