Oscillatory Behavior in a System of Four Coupled Oscillators Model

Article Preview

Abstract:

In this paper, we discuss a system of four coupled oscillators with delays. Some sufficient conditions to guarantee the existence of oscillations for the model are obtained. Computer simulations are provided to demonstrate the present results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1998-2004

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.E. Pinto, S.L. Lopes and R.L. Viana: Collective behavior in a chain of Van der Pol oscillators with power-law coupling, Physica A, Vol. 303 (2002), 339-356.

DOI: 10.1016/s0378-4371(01)00549-0

Google Scholar

[2] L. Zhang and S.Y. Liu: Stability and pattern formation in a coupled arbitrary order of autocatalysis system, Appl. Math. Model., Vol. 33 (2009), 884-896.

DOI: 10.1016/j.apm.2007.12.013

Google Scholar

[3] M.H. Eissa, U.H. Hegazy and Y.A. Amer: Dynamic behavior of an AMB supported rotor subject to harmonic excitation, Appl. Math. Model., Vol. 32 (2008), 1370-1380.

DOI: 10.1016/j.apm.2007.04.005

Google Scholar

[4] H.G. Winful and L. Rahman: Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers, Phys. Rev. Lett., Vol. 65 (1990), 1575-1578.

DOI: 10.1103/physrevlett.65.1575

Google Scholar

[5] S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa: Self-synchronization in coupled salt-water oscillators, Physica D, Vol. 115 (1998), 313-320.

DOI: 10.1016/s0167-2789(97)00240-6

Google Scholar

[6] I. Belykh, V. Belykh and M. Hasler: Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, Vol. 195 (2004), 188-206.

DOI: 10.1016/j.physd.2004.03.013

Google Scholar

[7] X.Y. Li, J.C. Ji and C.H. Hansen: Dynamics of two delay coupled van der Pol oscillators, Mech. Res. Commun., Vol. 33 (2006), 614-627.

DOI: 10.1016/j.mechrescom.2005.09.009

Google Scholar

[8] J.M. Zhang and X. S. Gu: Stability and bifurcation analysis in the delay-coupled van der Pol oscillators, Appl. Math. Model., Vol. 34 (2010), 2291-2299.

DOI: 10.1016/j.apm.2009.10.037

Google Scholar

[9] K. Rompala, R. Rand, H. Howland: Dynamics of three coupled van der Pol oscillators with application to circadian rhythms, Commun. Nonlinear Sci. Numer. Simul., Vol. 12 (2007), 794-803.

DOI: 10.1016/j.cnsns.2005.08.002

Google Scholar

[10] S.Z. Zou, L.H. Huang and Y.N. Wang: Bifurcation of a three-unit neural network, Applied Mathematics and Computation, Vol. 217 (2010), 904-917.

DOI: 10.1016/j.amc.2010.06.034

Google Scholar

[11] T. Mashima and H. Kawakami: Bifurcation of equilibrium points and synchronized periodic solution in four coupled oscillators, International Symposium on Nonlinear Theory and its Application, Vol. 29 (1997), 141-144.

Google Scholar

[12] H.G. Enjieu Kadji, J.B. Chabi Orou and P. Woafo: Synchronization dynamics in a ring of four mutually coupled biological systems, Commun. Nonlinear Sci. Numer. Simul., Vol. 13 (2008), 1361-1372.

DOI: 10.1016/j.cnsns.2006.11.004

Google Scholar

[13] J. Blair, S. J. Campbell and V. D. Driessche: Frustration, stability and delay-induced oscillations in a neural network model, SIAM J. Appl. Math., Vol. 56 (1996), 245-255.

DOI: 10.1137/s0036139994274526

Google Scholar

[14] O. Arino and I. Gyori: Necessary and sufficient condition for the oscillation of neutral differential system with several delays, J. Diff. Eqns., Vol. 81 (1989), 98-105.

DOI: 10.1016/0022-0396(89)90179-4

Google Scholar