The Effect of Zn on Microstructures and Properties of Extruded Mg-Gd-Y Alloys

Article Preview

Abstract:

By using digital micro-hardness testing, mechanical testing, optical microscopy(OM), scanning electron microscopy(SEM), transimission electron microscopy(TEM), microstructure and mechanical properties of Mg-9Gd-3Y-xZn (x=0,1,2,3 wt.%) alloys during extrusion and following aging at 210 °C were investigated. The results showed that Zn can refined grains of the alloy. In T5 condition the average grains of the alloy without Zn addition were about 20.08 μm; the average grains of the alloys with 1 wt.% Zn addition and 3 wt.% Zn addition were about 15.26 μm and 10.17 μm, respectively. For the alloy with 1 wt.% Zn addition in peak-aged state, the values of tensile strength and yield strength reached 418MPa and 329 MPa, as well as ductility rate reached 5.6 %, respectively, exhibiting superior mechanical properties .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-294

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.L. Mordike, and T. Ebert: Mater. Sci. Eng., A Vol. 302 (2001), pp.37-45.

Google Scholar

[2] S.Y. Xu, S.Y. Long, and F.G. Li: Mater. Sci. Forum Vol. 546-549 (2007), pp.113-118.

Google Scholar

[3] I.J. Polmear: Mater. Sci. Technol. Vol. 10 (1994), pp.1-16.

Google Scholar

[4] L.L. Rokhlin, and I.N. Nikitina: Zeitschrift fuer Metallkunde Vol. 85 (1994), pp.819-823.

Google Scholar

[5] I. Stulíková, B. Smola, F. von Buch, and B.L. Mordike: Materialwisse. Werkstofftech. Vol. 34 (2003): 102-108.

Google Scholar

[6] X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding and J.F. Nie: Mater. Sci. Eng., A Vol. 431 (2006), pp.322-327.

Google Scholar

[7] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch: Acta Mater. Vol. 51 (2003), pp.5335-5348.

DOI: 10.1016/s1359-6454(03)00391-4

Google Scholar

[8] M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Scripta Mater. Vol. 48(2003), pp.997-10026.

Google Scholar

[9] L.Y. Wei, G.L. Dunlop, and H. Westengen: Metall. Mater. Trans. A Vol. 26 (1995), pp.1705-171.

Google Scholar

[10] M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura: Scripta Mater. Vol. 53 (2005), pp.799-803.

Google Scholar

[11] S. Yoshimoto, M. Yamasaki, and Y. Kawamura: Mater. Trans. Vol. 47 (2006), pp.959-965 E.

Google Scholar

[12] Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Acta Mater. Vol. 50 (2002), pp.3845-3857.

Google Scholar

[13] Y. Kawamura, and M. Yamasaki: Mater. Trans. Vol. 48 (2007), pp.2986-2992.

Google Scholar

[14] M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Mater. Sci. Eng., A Vol. 387-389 (2004), pp.706-709.

Google Scholar

[15] J.F. Nie, X. Gao, and S.M. Zhu: Scripta Mater. Vol. 53 (2005), pp.1049-1053.

Google Scholar

[16] I.A. Anyanwu, S. Kamado, and Y. Kojima: Mater. Trans. Vol. 42 (2001), pp.1206-1211.

Google Scholar

[17] T. Kawabata, K. Matsuda, S. Kamado, Y. Kojima, and S. Ikeno: Mater. Sci. Forum Vol. 303(2003), pp.419-422.

Google Scholar

[18] I.A. Anyanwu, S. Kamado, and Y. Kojima: Mater. Trans. Vol. 42(2001), pp.1212-1218.

Google Scholar