Finite Element Simulation for Laser Ablation of Carbon Fiber Epoxy Composite

Article Preview

Abstract:

In order to predict the size and shape of the laser ablative hole, a 3D finite element model was developed to simulate the Nd:YAG laser ablation of carbon fiber epoxy composite. For given irradiation conditions, good agreement with experimental data relating to hole dimensions. The numerical results and experimental observations indicate that with the irradiation time increasing, the domain under investigation temperature raises rapidly and the further to the spot center, the smaller the temperature raises. After 0.093s the target surface temperature is higher than the critical temperature of composite, so the removal of the material on first composite layer occurs. It also can be observed that heat energy of the laser spread within the material and the isotherm ribbon, as well as crater border, is step-like.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

715-720

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.K. Chen, A. Perea and F.A. Allahdadi: J. Compos. Engng Vol. 5 (1995), p.1135.

Google Scholar

[2] R.J. Morgan, F.M. Hong and J.K. Lepper: J. Compos. Mater Vol. 22 (1988), p.1026.

Google Scholar

[3] C.A. Griffis, J.A. Nemes and F.R. Stonesifer: J. Compos. Mater Vol. 20 (1986), p.216.

Google Scholar

[4] Y. Dimitrienko: Compos, Part A: Appl Sci Manufact Vol. 28 (1997), p.453.

Google Scholar

[5] W.K. Yung, J.S. Liu and H.C. Man: J. Mater. Proces. Tech Vol. 101 (2000), p.306.

Google Scholar

[6] T.M. Young: J. Thermoplas. Compos. Mater Vol. 21 (2008), p.543.

Google Scholar

[7] V.V. Nesmelov, V.D. Goldin and G.F. Kostin: Combus. Explo Vol. 39 (2003), p.309.

Google Scholar

[8] Y.J. Lee, H.J. Joo: Compos, Part A: Appl Sci Manufact Vol. 35 (2004), p.1285.

Google Scholar

[9] M.A. Seif, U.A. Khashaba and R.R. Oviedo: Compos. Struc Vol. 79 (2007), p.113.

Google Scholar

[10] B. Sinkovics, P. Gordon and G. Harsanyi: App. Therm. Engine Vol. 30 (2010), p.2492.

Google Scholar

[11] C. Chan, and J. Mazumder: J. Appl. Phys Vol. 62 (1987), p.4579.

Google Scholar

[12] C.D. Boley, and J.T. Early: Las. Mater. Proces Vol. 79 (1994), p.499.

Google Scholar

[13] V. Tagliaferri, A. Dillio, and I. Visconti: Compos Vol. 16 (1985), p.317.

Google Scholar

[14] C.F. Cheng, Y.C. Tsui and T.W. Clyne: Acta Mater Vol. 46 (1998), p.4273.

Google Scholar

[15] M. Kim, Z. Chen, and P. Majumdar: Compos. Struc Vol. 49 (1993), p.231.

Google Scholar

[16] L.M. Yu: J. Mater. Proces. Tech Vol. 63 (1997), p.637.

Google Scholar

[17] F.A. Sulaiman, B.S. Yilbas and M. Ahsan: Las Engine Vol. 16 (2006), p.105.

Google Scholar

[18] K.C. Yung, S.M. Mei and T.M. Yue: J. Mater. Proces Tech Vol. 122 (2002), p.278.

Google Scholar

[19] E. Aoyama, H. Inoue and T. Hirogaki: Compos Struc Vol. 32 (1995), p.567.

Google Scholar