[1]
R. van Loon, P.D. Anderson, F.N. van de Vosse. A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. Journal of Computational Physics 217 (2006) 806–823.
DOI: 10.1016/j.jcp.2006.01.032
Google Scholar
[2]
Gene Hou, Jin Wang, and Anita Layton. Numerical Methods for Fluid-Structure Interaction- A Review. Communications in Computational Physics (2012), Vol. 12, No. 2, pp.337-377. doi: 10. 4208/cicp. 291210. 290411s.
DOI: 10.4208/cicp.291210.290411s
Google Scholar
[3]
J. Vierendeels, K. Dumont, P.R. Verdonck. A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics. Journal of Computational and Applied Mathematics 215 (2008) 602 – 609.
DOI: 10.1016/j.cam.2006.04.067
Google Scholar
[4]
Hubner, B., Walhorn, E. and Dinkler, D. (2004). A monolithic approach to fluid-structure interaction using space-time finite elements, Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp.2087-2104.
DOI: 10.1016/j.cma.2004.01.024
Google Scholar
[5]
Ryzhakov, P. B., Rossi, R., Idelsohn, S. R. and O˜nate, E., (2010). A monolithic Lagrangian approach for fluid-structure interaction problems, Computational Mechanics, Vol. 46, pp.883-899.
DOI: 10.1007/s00466-010-0522-0
Google Scholar
[6]
Jean Donea and Antonio Huerta (2003). Finite Elements Methods for Flow Problems. 1st ed. England: Wiley. pp.4-5.
Google Scholar
[7]
Hirt, C., Amsden, A., and Cook, J. An Arbitrary Lagrangian Eulerian Finite element method for all flow speeds. Journal of Computational Physics 14 (1974), 227-253.
DOI: 10.1016/0021-9991(74)90051-5
Google Scholar
[8]
Donea, J., Fasoli-Stella, P., and Giuliani, S. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems. In Transaction of the 4th Conference (San Francisco, 1977), p. Paper B1/2.
Google Scholar
[9]
Baaijens, F. An U-ALE formulation of 3-D unsteady viscoelastic flow. International Journal of Numerical Methods in Engineering 36(7) (1993), 1115-1143.
DOI: 10.1002/nme.1620360704
Google Scholar
[10]
Nomura, T., and Hughes, T. An Arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and Engineering 95 (1992), 115-138.
DOI: 10.1016/0045-7825(92)90085-x
Google Scholar
[11]
Donea, J., S. Giuliani, J. Halleux, An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions, Computer Methods in Applied Mechanics and Engineering 33 (1–3) (1982) 689–723.
DOI: 10.1016/0045-7825(82)90128-1
Google Scholar
[12]
Peskin, C.S. Flow patterns around heart valves: a numerical method, Journal of Computational Physics 10 (1972) 252–271.
DOI: 10.1016/0021-9991(72)90065-4
Google Scholar
[13]
Borazjani, I., Liang Ge, Fotis Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics. 227 (2008), 7587-7620.
DOI: 10.1016/j.jcp.2008.04.028
Google Scholar
[14]
Raoul van Loon, Patrick D. Anderson, Frank P.T. Baaijens, Frans N. van de Vosse. A three-dimensional fluid–structure interaction method for heart valve modelling. C. R. Mecanique 333 (2005) 856–866.
DOI: 10.1016/j.crme.2005.10.008
Google Scholar
[15]
Singiresu S. Rao (2005). Mechanical Vibrations. 4th ed. Malaysia: Pearson Education & Prentice-Hall, Inc. pp.17-18, 109-112.
Google Scholar