[1]
S. Raynaud, E. Champion, and D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials, 23 (2002) 1073-1080.
DOI: 10.1016/s0142-9612(01)00219-8
Google Scholar
[2]
G. S. Kumar, A. Thamizhavel, Y. Yokogawa, S. N. Kalkura, and E. K. Girija, Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications, Materials Chemistry and Physics, 134 (2012).
DOI: 10.1016/j.matchemphys.2012.04.005
Google Scholar
[3]
V. Simon, D. Lazăr, R. V. F. Turcu, H. Mocuta, K. Magyari, M. Prinz, M. Neumann, and S. Simon, Atomic environment in sol–gel derived nanocrystalline hydroxyapatite, Materials Science and Engineering: B, 165 (2009) 247-251.
DOI: 10.1016/j.mseb.2009.06.010
Google Scholar
[4]
P. Moghimian, A. Najafi, S. Afshar, and J. Javadpour, Effect of low temperature on formation mechanism of calcium phosphate nano powder via precipitation method, Advanced Powder Technology, 23 (2012) 744-751.
DOI: 10.1016/j.apt.2011.10.001
Google Scholar
[5]
J. Shepherd, D. Shepherd, and S. Best, Substituted hydroxyapatites for bone repair, Journal of Materials Science: Materials in Medicine, 23 (2012) 2335-2347.
DOI: 10.1007/s10856-012-4598-2
Google Scholar
[6]
I. R. d. Lima, G. G. Alves, G. V. d. O. Fernandes, E. P. Dias, G. d. A. Soares, and J. M. Granjeiro, Evaluation of the in vivo biocompatibility of hydroxyapatite granules incorporated with zinc ions, Materials Research, 13 (2010) 563-568.
DOI: 10.1590/s1516-14392010000400021
Google Scholar
[7]
A. Ito, M. Otsuka, H. Kawamura, M. Ikeuchi, H. Ohgushi, Y. Sogo, and N. Ichinose, Zinc-containing tricalcium phosphate and related materials for promoting bone formation, Current Applied Physics, 5 (2005) 402-406.
DOI: 10.1016/j.cap.2004.10.006
Google Scholar
[8]
M. Yamaguchi, Role of nutritional zinc in the prevention of osteoporosis, Molecular and Cellular Biochemistry, 338 (2010) 241-254.
DOI: 10.1007/s11010-009-0358-0
Google Scholar
[9]
W. Hu, J. Ma, J. Wang, and S. Zhang, Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles, Materials Science and Engineering: C, 32 (2012) 2404-2410.
DOI: 10.1016/j.msec.2012.07.014
Google Scholar
[10]
F. Miyaji, Y. Kono, and Y. Suyama, Formation and structure of zinc-substituted calcium hydroxyapatite, Materials Research Bulletin, 40 (2005) 209-220.
DOI: 10.1016/j.materresbull.2004.10.020
Google Scholar
[11]
F. Ren, R. Xin, X. Ge, and Y. Leng, Characterization and structural analysis of zinc-substituted hydroxyapatites, Acta Biomaterialia, 5 (2009) 3141-3149.
DOI: 10.1016/j.actbio.2009.04.014
Google Scholar
[12]
I. S. Gunawan, A. Naqshbandi, S. Ramesh, Synthesis of Zinc Doped-Biphasic Calcium Phosphate Nanopowder via Sol-Gel Method, Key Engineering Materials, 531-532, (2013) 614-617.
DOI: 10.4028/www.scientific.net/kem.531-532.614
Google Scholar
[13]
S. Cazalbou, C. Combes, D. Eichert, and C. Rey, Adaptative physico-chemistry of bio-related calcium phosphates, Journal of Materials Chemistry, 14 (2004) 2148-2153.
DOI: 10.1039/b401318b
Google Scholar