[1]
Rogers G D, Schwinger M R, Kaidy J T, et al. Autonomous star tracker performance, Acta Astronautica 65(2009): 61–74.
DOI: 10.1016/j.actaastro.2009.01.045
Google Scholar
[2]
Sun Ting, Fei Xing, Zheng You. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers, Sensors 13. 4 (2013): 4598-4623.
DOI: 10.3390/s130404598
Google Scholar
[3]
U. Schmidt, Ch. Elstner, K. Michel. ASTRO 15 Star Tracker Flight Experience and Further Improvements towards the ASTRO APS Star Tracker, AIAA Guidance, Navigation, and Control Conference, AIAA-2008-6649, (2008).
DOI: 10.2514/6.2008-6649
Google Scholar
[4]
Blarre L, Ouaknine J, Oddos-Marcel L. High accuracy Sodern Star Trackers: Recent improvements proposed on SED36 and HYDRA Star Trackers, AIAA Guidance, Navigation, and Control Conference, AIAA 2006-6046, Keystone, CO, United States, (2006).
DOI: 10.2514/6.2006-6046
Google Scholar
[5]
Ouaknine J, Blarre L, Oddos-Marcel L. Reduction of Low Frequency Error for SED36 and APS based HYDRA Star Trackers, Proc. 6th Internat. Conf. on Space Optics', ESTEC, Noordwijk, The Netherlands, 27-30 June 2006 (ESA SP-621, June 2006).
DOI: 10.1117/12.2308086
Google Scholar
[6]
Jorgensen, P.S., Jorgensen, J.L., Denver, T., Betto, M. In-flight quality and accuracy of attitude measurements from the CHAMP advanced Stellar compass', Acta Astronautica, 2005, 56, pp.181-186.
DOI: 10.1016/j.actaastro.2004.09.012
Google Scholar
[7]
Yuwang Lai, Junhong Liua, Yonghe Ding, et al. Precession-Nutation Correction for Star Tracker Attitude Measurement of STECE Satellite, Chinese Journal of Aeronautics, Vol. 27, No. 1, pp.117-123, (2014).
DOI: 10.1016/j.cja.2013.12.016
Google Scholar
[8]
Y. Lai, et al. In-flight quality evaluation of attitude measurements from STECE APS-01 star Tracker, Acta Astronautica (2014), http: /dx. doi. org/10. 1016/j. actaastro. 2014. 06. 009.
DOI: 10.1016/j.actaastro.2014.06.009
Google Scholar
[9]
Jiong-qi Wang, Kai Xiong, Haiyin Zhou. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement, Chinese Journal of Aeronautics, Vol. 25, No. 2012, pp.615-621, (2012).
DOI: 10.1016/s1000-9361(11)60426-3
Google Scholar
[10]
K. Xiong, C.Q. Zhang, L.D. Liu. Identification of star sensor low-frequency error parameters, IET Control Theory Appl., 2012, Vol. 6, Iss. 3, pp.384-393.
DOI: 10.1049/iet-cta.2011.0086
Google Scholar
[11]
Crassidis, J.L., Markley, F.L., Cheng Y., A survey of nonlinear attitude estimation methods, J. Guid. Control Dyn., 2007, 30 (1), pp.12-28.
Google Scholar
[12]
Lefferts, E. J., Markley, F. L., and Shuster, M. D., Kalman Filtering for Spacecraft Attitude Estimation, J. Guid. Control Dyn., Vol. 5, No. 5, 1982, pp.417-429.
DOI: 10.2514/3.56190
Google Scholar
[13]
Markley, F. L., Attitude Error Representations for Kalman Filtering. J. Guid. Control Dyn., Vol. 63, No. 2, 2003, pp.311-317.
Google Scholar
[14]
Y. Yang, Spacecraft attitude determination and control: Quaternion based method, Annual Reviews in Control, 36 (2012): 198-219.
DOI: 10.1016/j.arcontrol.2012.09.003
Google Scholar