p.318
p.326
p.331
p.336
p.341
p.349
p.355
p.360
p.365
Enhancing Vibration Damping of Smarts Structures by Energy Transfer between Modes
Abstract:
In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have demonstrated interesting properties in vibration control with a low power consumption. The damping attenuation can be improved thanks to energy transfer between a voltage source and the SSD circuit. Harvesting energy on a second structure can provide this voltage source but drastically complex the overall system. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting. Our original approach consists in transferring energy between modes of a same structure: energy is harvested on non-controlled mode to increase the attenuation of a targeted mode. In this paper, we present theoretical analysis and numerical simulations of our energy-transfer architecture applied to an academic case, a free-clamped beam. Our electrical architecture called Synchronized Switching Damping and Harvesting (SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a dc-dc converter (Buck-Boost topology) and a vibration modal control circuit (similar to a Synchronized Switch on Voltage SSDV). In a multi-sine excitation, an increase of the attenuation damping of 3.8dB with our new technique compared to classic SSDI is achieved.
Info:
Periodical:
Pages:
341-345
Citation:
Online since:
October 2014
Authors:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: