[1]
D.R. Hall, U.S. Patent 4, 694, 918. (1987).
Google Scholar
[2]
D.R. Hall, R.B. Crockett, C. Webb, M. Beazer, U.S. Patent 8, 365, 845, B2. (2013).
Google Scholar
[3]
K.M. Jensen, S.R. Jurewicz, U.S. Patent 5, 871, 060. (1999).
Google Scholar
[4]
S.R. Snyder, G.E. Bailey, U.S. Patent 6, 102, 143. (2000).
Google Scholar
[5]
R.H. Knowlton, R. Kester, Curved cutters extend range of formations drilled with PDC bits, Paper SPE/IADC 18634, presented at the 1989 SPE/IADC drilling conference, New Orleans, Feb. 28-Mar. 3, (1989).
DOI: 10.2118/18634-ms
Google Scholar
[6]
R.H. Knowlton, M. Russel, Diamond shape technology improves cutting structures, Paper Mr91-156, presented at Super abrasives 91 conference, Chicago. June 11-13. (1991).
Google Scholar
[7]
D.P. Moran , Dome-shaped PDC cutters drill harder rock effectively, J. Oil&Gas. 90 (1992), 50.
Google Scholar
[8]
K.E. Bertagnolli, C.H. Cooley, Polycrystalline diamond compact (PDC) design methodology utilizing strain energy capacity, Proceedings of ETCE 2001-17027.
Google Scholar
[9]
T.P. Lin, M. Hood, G.A. Cooper, Residual stresses in polycrystalline diamond compacts, J. AM. Ceram. Soc. 77(6) (1994) 1562-1568.
DOI: 10.1111/j.1151-2916.1994.tb09757.x
Google Scholar
[10]
Guoping Xu, Zhimin Yin, Qiwu Chen, Gen Xu, Micro-Raman stress of polycrystalline diamond compact, J. central. south. university(science & technology). 41(2010) 1310-1314.
Google Scholar
[11]
A.C. Shane, K.V. Yogesh, L. Ram, R. Ghanshyam, Micro-Raman stress investigations and X-ray diffraction analysis of polycrystalline diamond (PCD) tools, Diamond. Relat. Mater. 5 (1996)1159-1165.
DOI: 10.1016/0925-9635(96)00534-1
Google Scholar
[12]
Hongsheng Jia, Hongan Ma, Xiaopeng Jia, Research on polycrystalline diamond compact (PDC) with low residual stress prepared using nickel-based additive, Int. J. Refract. Met. Hard. Mater. 29( 2011) 64-67.
DOI: 10.1016/j.ijrmhm.2010.07.004
Google Scholar
[13]
R.M. Erasums, J.D. Comins, V. Mofokeng, Z. Martin, Application of Raman spectroscopy to determine stress in polycrystalline diamond tools as a function of tool geometry and temperature, Diamond. Relat. Mater. 20 (2011) 907-911.
DOI: 10.1016/j.diamond.2011.03.018
Google Scholar
[14]
R.H. Frushour, U.S. patent 7, 595, 110, B2. (2009).
Google Scholar
[15]
Minoru Akaishi, Hisao Kanda, Yoichiro Sato. et al, Sintering behaviour of the diamond-cobalt system at high temperature and pressure, J. Mat. Sci. 17 (1982) 193-198.
DOI: 10.1007/bf00809051
Google Scholar
[16]
D.R. Hall, M.E. Russell, U.S. Patent 4, 604, 106. (1986).
Google Scholar
[17]
A.D. Krawitz, R.A. Winholtz, E.F. Drake, N.D. Griffin, Residual stresses in polycrystalline diamond compacts, Int. J. Refract . Met . Hard . Mater. 17( 1999) 117-122.
DOI: 10.1016/s0263-4368(99)00007-4
Google Scholar
[18]
J.W. Paggett, E.F. Drake, A.D. Krawitz, R.A. Winholtz, N.D. Griffin, Residual stress and stress gradients in polycrystalline diamond compacts, Int. J. Refract. Met. Hard. Mater. 20( 2002) 187-194.
DOI: 10.1016/s0263-4368(01)00077-4
Google Scholar