Catalytic Oxidation Removal of HCN in Tail Gas

Article Preview

Abstract:

High activity catalyst for HCN removal were prepared by immobilizing Cu2+on γ-Al2O3. The catalyst showed great activity from 150°C to 250°C. The removal efficiency of HCN were above 98%. Based on the experimental phenomena, it can be assumed that the rate controlling step of the catalytic reaction process was the generation of HNCO by HCN and O2. A prediction model consist of HCN conversion, HCN flow rate, catalyst dosage was derived by combining the Langmuir adsorption isotherm. The experimental data fitted with the prediction model very well and the model may be a worthy reference for the catalytic oxidation process of HCN.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

521-527

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. M. Oliver, K. Jugoslav, P. Aleksandar, et al, Synthetic activated carbons for the removal of hydrogen cyanide from air, J. Chemical Engineering and Processing. 44 (2005) 1181-1187.

DOI: 10.1016/j.cep.2005.03.003

Google Scholar

[2] P. Ning , J. Qiu , X. Q. Wang , et al, Metal loaded zeolite adsorbents for hydrogen cyanide removal, J. Journal of Environmental Sciences. 25 (2013) 808-814.

DOI: 10.1016/s1001-0742(12)60138-7

Google Scholar

[3] Z. Chen, S. Yuan, Q. F. Liang, et al, Distribution of HCN, NH3, NO, and N2 in an entrained flow gasifier, J. Chemical Engineering Journal. 348 (2009) 312-318.

DOI: 10.1016/j.cej.2008.08.038

Google Scholar

[4] S. Yuan, J. Z. Zhou, J. Li, et al, HCN and NH3(NOx precureors) released under rapid pyrolysis of biomass/coal blends, J. Journal of Analytical and Applied Pyrolysis. 92 (2011) 463-469.

DOI: 10.1016/j.jaap.2011.08.010

Google Scholar

[5] P. W. Ye, Z. Q. Luan, Q. Li, et al, The use of a combination of activated carbon and nickel microfibers in the removal of hydrogen cyanide from air, J. CARBON. 47 (2009) 1799-1805.

DOI: 10.1016/j.carbon.2009.02.031

Google Scholar

[6] J. W. Zhang, T. ITO, T. Okada, et al, Improvement of NOx formation model for pulverized coal combustion by increasing oxidation rate of HCN, J. Fuel. 113 (2013) 697-06.

DOI: 10.1016/j.fuel.2013.06.030

Google Scholar

[7] M. Y. Xu , Y. P. Cui, L. L. Qin, et al, Key factors influencing the release and formation of HCN during pyrolysis of iron-containing coal, J. Journal of Fuel Chemistry and Technology. 35 (2007) 5-7.

DOI: 10.1016/s1872-5813(07)60008-5

Google Scholar

[8] J. Fuente, M. Ruiz-Bermejob, S. Menor-Salvan, Thermal characterization of HCN polymers by TGeMS, TG, DTA and DSC methods, J. Polymer Degradation and Stability. 96 (2011) 943-948.

DOI: 10.1016/j.polymdegradstab.2011.01.033

Google Scholar

[9] M. Seredych, M. V. Merwe, T. J. Bandosz, Effects of surface chemistry on the reactive adsorption of hydrogen cyanide on activated carbons, J. CARBON. 47 (2009) 2456-2465.

DOI: 10.1016/j.carbon.2009.04.037

Google Scholar

[10] H. L. Karlsson, Ammonia, Nitrous oxide and hydrogen cyanide emissions from five passenger vehicles, J. Science of the Total Evironment. 334 (2004) : 125-132.

DOI: 10.1016/j.scitotenv.2004.04.061

Google Scholar

[11] M. J. Hudson, J. P. Knowles, P. J. Harris, et al, The trapping and decomposition of toxic gases such as hydrogen cyanide using modified mesoporous silicates, J. Microporous and Mesoporous Materials. 75 (2004) 121-128.

DOI: 10.1016/j.micromeso.2004.07.023

Google Scholar

[12] Z. W. Sun, Z. S. Li, A. A. Konnov, et al, Quantitative HCN measurements in CH4/N2O/O2/N2 ames using mid-infrared polarization spectroscopy, J. Combustion and Flame. 158 (2011) 1898-(1904).

DOI: 10.1016/j.combustflame.2011.03.008

Google Scholar

[13] K. Hansson, J. Samuelsson, C. Tullin, et al, Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds, J. Combustion and Flame. 137 (2004) 265-277.

DOI: 10.1016/j.combustflame.2004.01.005

Google Scholar

[14] O. Krocher, M. Elsener, Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts, J. Applied Catalysis B: Environmental. 92 (2009) 75-89.

DOI: 10.1016/j.apcatb.2009.07.021

Google Scholar

[15] H. B. Zhao, G. Tonkyn R, E. Stepphan, et al, Catalytic oxidation of HCN over a 0. 5% Pt/Al2O3catalyst, J. Applied Catalysis B: Environmental. 65 (2006) 282-290.

DOI: 10.1016/j.apcatb.2006.02.009

Google Scholar

[16] J. Gimnez-Lopez, A. Millera, R. Bilbao, et al, HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study, J. Combustion and Flame. 157 (2010) 267-276.

DOI: 10.1016/j.combustflame.2009.07.016

Google Scholar