[1]
Liu Hui, Du Yuxiao, Peng Jie, Li Weiyan. A Review of Brain-computer Interface Development[J], Electronic Science and technology, 2011, 24( 5) : 116-119.
Google Scholar
[2]
J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J.K. Chapin, J. Kim, S. J. Biggs, M.A. Srinivassan, and M. A. L. Nicolelis, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature, vol. 408, pp.361-365, (2000).
DOI: 10.1038/35042582
Google Scholar
[3]
M.A. Lebedev and M. A. L. Nicolelis, Brain-machine interfaces: past, present and future, Trends in Neurosciences, vol 29, pp.536-546, (2006).
DOI: 10.1016/j.tins.2006.07.004
Google Scholar
[4]
J. del R. Millán,F. Renkens,J. Mouriño, and W. Gersterner, Noninvasive brain-actuated control of a mobile robot by human EEG, IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, p.1026 – 1033, (2004).
DOI: 10.1109/tbme.2004.827086
Google Scholar
[5]
A.O.G. Barbosa, D.R. Achanccaray, and M. A. Meggiolaro, Activation of a mobile robot through a brain computer interface, Proc. of 2010 IEEE International Conference on Robotics and Automation, p.4815 – 4821, (2010).
DOI: 10.1109/robot.2010.5509150
Google Scholar
[6]
Ana C. Lopes, Gabriel Pires, Urbano Nunes. Assisted navigation for a brain-actuated intelligent wheelchair, Robotics and Autonomous Systems, 2012, pp.1-14.
DOI: 10.1016/j.robot.2012.11.002
Google Scholar
[7]
Carlson, T Demiris, Y. Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Volume: 42, Issue: 3, p.876 – 888, (2012).
DOI: 10.1109/tsmcb.2011.2181833
Google Scholar
[8]
C. J. Bell, P. Shenoy, R. Chalodhorn, and R. P. N. Rao, Control of a humanoid robot by a noninvasive brain-computer interface in humans, Journal of Neural Engineering, vol. 5, no. 2, pp.214-220, (2008).
DOI: 10.1088/1741-2560/5/2/012
Google Scholar
[9]
DENG Zhidong; Li Xiuquan, Zheng Kuanhao. A Humanoid Robot Control System with SSVEP-based Asynchronous Brain-Commuter Interface [j]. Robot, 2011, 33(1): 129-13.
DOI: 10.3724/sp.j.1218.2011.00129
Google Scholar
[10]
OU Qing-li, HE Ke-zhong. Research On Key Techniques And Development Of Outdoor Intelligent Autonomous Mobile Robot. Robot, 2000, 22(6): 519-526.
Google Scholar
[11]
MENG Li-xia, SUN Fu-chun, LIU Hua-ping, CHU Tao. A Fusion Navigation of double Laser Radar for Intelligent Vehicle, 2010 International Conference on Test and Measurement (ICTM 2010), Phuket, Thailand, pp.426-43.
Google Scholar
[12]
Wu Z, Lai Y, Wu D and Yao D Stimulator selection in SSVEP-based BCI. Med. Eng. Phys. 2008, 30 1079–88.
DOI: 10.1016/j.medengphy.2008.01.004
Google Scholar
[13]
Lin Z, Zhang C, Wu W and Gao X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs, IEEE Trans. Biomed. Eng. 2006, 53(12): 2610–2614.
DOI: 10.1109/tbme.2006.886577
Google Scholar
[14]
Guangyu Bin, Xiaorong Gao1, Zheng Yan, Bo Hong and Shangkai Gao. An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method, Journal of Neural Engineering. 2009, 6(4): 1-6.
DOI: 10.1109/iembs.2009.5333544
Google Scholar
[15]
Meng L X et al. Vehicle Navigation System based on BCI and Dual Laser Radar[J]. Robot. 2012, 334(4): 449-454.
Google Scholar