Robust Predictive Control for NPC Grid-Connected Inverters

Article Preview

Abstract:

In this paper, the state space model of neutral point clamped three-level grid-connected inverter is detailed derived and an Robust Predictive Control (RPC) method is proposed. In the proposed method, the total 27 switching vectors composed of a finite set from which the optimal switching vector is selected according to a cost function. The robust performance is improved just by increasing switching frequency. Experimental results show that the proposed method has a flexible control purposes and we can optimize the synthesize performance just by adjusting weighting coefficients of cost function. In addition, RPC controller has a robust performance in tracking output reference current and balancing neutral point voltage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

522-525

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, Proportional-resonant controllers and filters for grid-connected voltage-source converters, Electric Power Applications, IEE Proceedings-, vol. 153, pp.750-762, 2006-01-01 (2006).

DOI: 10.1049/ip-epa:20060008

Google Scholar

[2] E. R. C. Da Silva, E. Cipriano Dos Santos and C. B. Jacobina, Pulsewidth modulation strategies, Industrial Electronics Magazine, IEEE, vol. 5, pp.37-45, 2011-01-01 (2011).

DOI: 10.1109/mie.2011.941120

Google Scholar

[3] M. Castilla, J. Miret, J. Matas, L. G. de Vicua, and J. M. Guerrero, Linear current control scheme with series resonant harmonic compensator for single-phase grid-gonnected photovoltaic inverters, Industrial Electronics, IEEE Transactions on, vol. 55, pp.2724-2733, 2008-01-01 (2008).

DOI: 10.1109/tie.2008.920585

Google Scholar

[4] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, Evaluation of current controllers for distributed power generation systems, Power Electronics, IEEE Transactions on, vol. 24, pp.654-664, 2009-01-01 (2009).

DOI: 10.1109/tpel.2009.2012527

Google Scholar

[5] O. Alonso, L. Marroyo, P. Sanchis, E. Gubia, and A. Guerrero, Analysis of neutral-point voltage balancing problem in three-level neutral-point-clamped inverters with SVPWM modulation, in IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the], 2002, pp.920-925.

DOI: 10.1109/iecon.2002.1185395

Google Scholar

[6] L. Kui-Jun, P. Byoung-Gun, K. Rae-Young, and H. Dong-Seok, Robust predictive current controller based on a disturbance estimator in a three-phase grid-connected inverter, Power Electronics, IEEE Transactions on, vol. 27, pp.276-283, 2012-01-01 (2012).

DOI: 10.1109/tpel.2011.2157706

Google Scholar

[7] M. Singh and A. Chandra, Application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities, Power Electronics, IEEE Transactions on, vol. 26, pp.165-175, 2011-01-01 (2011).

DOI: 10.1109/tpel.2010.2054113

Google Scholar

[8] L. Shang, D. Sun and J. Hu, Sliding-mode-based direct power control of grid-connected voltage-sourced inverters under unbalanced network conditions, Power Electronics, IET, vol. 4, pp.570-579, 2011-01-01 (2011).

DOI: 10.1049/iet-pel.2010.0160

Google Scholar

[9] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, Predictive control in power electronics and drives, Industrial Electronics, IEEE Transactions on, vol. 55, pp.4312-4324, 2008-01-01 (2008).

DOI: 10.1109/tie.2008.2007480

Google Scholar

[10] G. Papafotiou, J. Kley, K. G. Papadopoulos, P. Bohren, and M. Morari, Model predictive direct torque part II implementation and experimental evaluation, Industrial Electronics, IEEE Transactions on, vol. 56, pp.1906-1915, 2009-01-01 (2009).

DOI: 10.1109/tie.2008.2007032

Google Scholar

[11] T. Geyer, G. Papafotiou and M. Morari, Model predictive direct torque control part I concept, algorithm, and analysis, Industrial Electronics, IEEE Transactions on, vol. 56, pp.1894-1905, 2009-01-01 (2009).

DOI: 10.1109/tie.2008.2007030

Google Scholar

[12] R. Jos, P. Jorge, A. S. Csar, C. Pablo, L. Pablo, C. Patricio, and A. Ulrich, Predictive current control of a voltage source inverter, Industrial Electronics, IEEE Transactions on, vol. 54, pp.495-503, 2007-01-01 (2007).

Google Scholar

[13] S. A. Larrinaga, M. A. R. Vidal, E. Oyarbide, and J. R. T. Apraiz, Predictive control strategy for DC/AC converters based on direct power control, Industrial Electronics, IEEE Transactions on, vol. 54, pp.1261-1271, 2007-01-01 (2007).

DOI: 10.1109/tie.2007.893162

Google Scholar

[14] J. D. Barros and J. F. Silva, Optimal predictive control of three-phase NPC multilevel converter for power quality applications, Industrial Electronics, IEEE Transactions on, vol. 55, pp.3670-3681, 2008-01-01 (2008).

DOI: 10.1109/tie.2008.928156

Google Scholar

[15] J. Barros, F. Silva and E. Jesus, Fast predictive optimal control of NPC multilevel converters, Industrial Electronics, IEEE Transactions on, vol. PP, pp.1-1, (2012).

DOI: 10.1109/tie.2012.2206352

Google Scholar