Structural Phase Stability and Electronic Properties of Magnesium under High Pressure from First-Principles Calculations

Article Preview

Abstract:

First-principles pseudopotential calculations have been performed to investigate the structural stability and electronic properties of magnesium considering three possible structures under high pressure. The results show that magnesium crystallizes in the hcp structure is to be the most stable structure at the ground state, because of the lowest total energy. Magnesium undergoes a pressure-induced phase transition from the hcp structure to bcc structure at 65 GPa. And no further transition is found up to 220 GPa. The electronic structure properties of three structures of magnesium are also calculated and discussed. The structural stability mechanism is also explained through the electronic structures of three phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.X. Liu, Q. Xu, D.M. Xiong, B. Lin and C.L. Meng: Vacuum 89 (2013), p.233.

Google Scholar

[2] X. Tian, L.M. Wang, J.L. Wang, Y.B. Liu, J. An and Z.Y. Cao: J. Alloy. Compd. 465 (2008), p.412.

Google Scholar

[3] J. Zhang, W.G. Li and Z.X. Guo: J. Magnesium Alloy. 1 (2013) p.31.

Google Scholar

[4] M. Sumida: J. Alloy. Compd. 460 (2008) p.619.

Google Scholar

[5] Q. Li, Q.D. Wang, Y.X. Wang, X.Q. Zeng and W.J. Ding: J. Alloy. Compd. 427 (2007), p.115.

Google Scholar

[6] S.H. Zhang, Y. Zhu, X.Y. Zhang, S.L. Zhang, L. Qi and R.P. Liu: Comp. Mater. Sci. 50 (2010) p.179.

Google Scholar

[7] F. Yu, J.X. Sun and T.H. Chen: Physica B 406 (2011) p.1789.

Google Scholar

[8] C.P. Liang and H.R. Gong: J. Alloy. Compd. 489 (2010), p.130.

Google Scholar

[9] A. K. McMahan and J. A. Moriarty: Phys. Rev. B 27 (1983), p.3235.

Google Scholar

[10] F. Jona and P.M. Marcus: J. Phys.: Condens. Matter 15 (2003), p.7727.

Google Scholar

[11] J. A. Moriarty and A. K. McMahan: Phys. Rev. Lett. 48, (1982) p.809.

Google Scholar

[12] Q.X. Liu, C.Z. Fan and R.J. Zhang. J. Appl. Phys. 105 (2009) p.123505.

Google Scholar

[13] H. Olijnyk and W. B. Holzapfel: Phys. Rev. B 31 (1985) p.4628.

Google Scholar

[14] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Hasnip, S.J. Clark and M.C. Payne: J. Phys.: Condens. Matter 14 (2002) p.2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[15] J.P. Perdew, K. Burke and M. Ernzerhof. Phys. Rev. Lett. Vol. 77 (1996) p.3865.

Google Scholar

[16] D. Vanderbilt. Rhys. Rev. B Vol. 41 (1990) p.7892.

Google Scholar

[17] T.H. Fischer and J. Almlof. J. Phys. Chem. Vol. 96 (1992) p.9768.

Google Scholar

[18] H.J. Tao, J. Yin, Z.M. Yin, C.F. Zhang, J. Li, B.Y. Huang: The Chinese Journal of Nonferrous Metal 18 (2008) p.2230.

Google Scholar

[19] F. Jona and P.M. Marcus: Phys. Rev. B 66 (2002) p.094104.

Google Scholar

[20] Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen and Z.K. Liu: Calphad 28 (2004) p.79.

DOI: 10.1016/j.calphad.2004.05.002

Google Scholar

[21] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey: Comp. Mater. Sci. 59 (1990) p.399.

Google Scholar