High Permittivity and Varistor Properties of SnO2-Zn2SnO4 Composite Ceramics

Article Preview

Abstract:

(1-x)SnO2-xZn2SnO4 composite ceramics were prepared by traditional ceramic processing and the varistor, dielectric properties were investigated. With increasing Zn2SnO4 content, the breakdown electrical field EB and nonlinear coefficient α reaches the minimum of 6.9 V/mm and 2.5 at x=0.206, respectively. In the dielectric spectra, the relative dielectric constant εr exhibits strong frequency dependent character and at 40 Hz, εr for the sample of x=0.206 reaches a maximum as high as 3×104. In the frequency region lower than 1 kHz, accompanied by the sharp increase of dielectric loss at 40 Hz, εr is depressed and a dielectric peak is presented in the spectra with increasing bias voltage. In the low electrical current range of 1.37-20 μA, The barrier height φB about 1.0 eV are obtained and it is found that φB decreases with increasing measuring current for each sample. Based on the results, the varistor behavior with high dielectric constant is explained by the Schottky barriers at grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi: Chin. Phys. Lett. Vol. 22 (2005), p.750.

Google Scholar

[2] Y. Nakano, N. Ichinose: J. Mater. Res. Vol. 5 (1990), p.2910.

Google Scholar

[3] T. R. N. Kutty, S. Philip: Mat. Sci. Eng. B-solid. Vol. 33 (1995), p.58.

Google Scholar

[4] M. F. Yan, W. W. Rhodes: Appl. Phys. Lett. Vol. 40 (1982), p.536.

Google Scholar

[5] S. L. Yang, J. M. Wu: J. Am. Ceram. Soc. Vol. 76 (1993), p.145.

Google Scholar

[6] P. R. Bueno, M. R. Cassia-Santos, G. P. Simões Luis, W. Gomes José, E. Longo, A. Varela José: J. Am. Ceram. Soc. Vol. 85 (2002), p.282.

Google Scholar

[7] W. B. Su, J. F. Wang, H. C. Chen, W. X. Wang, G. Z. Zhang, C. P. Li: J. Appl. Phys. Vol. 92 (2002), p.4779.

Google Scholar

[8] S. Y. Chung, I. D. Kim, S. J. Kang: Nat. Mater. Vol. 3, (2004), p.774.

Google Scholar

[9] I. D. Kim, A. Rothschild, H. L. Tuller: Appl. Phys. Lett. Vol. 88, (2006), p.072902.

Google Scholar

[10] S. Aygün, X. L. Tan, J. P. Maria, D. Cann: J. Electroceram. Vol. 15, (2005), p.203.

Google Scholar

[11] B. Cheng, Y. H. Lin, W. Deng, J. Cai, J. Lan, C. W. Nan, X. Xiao, J. He: J. Electroceram. Vol. 29, (2012), p.250.

Google Scholar

[12] N. Choon-W: Ceram. Int. Vol. 38, (2012), p.2593.

Google Scholar

[13] Z. J. Shen, W. P. Chen, K. Zhu, Y. Zhuang, Y. M. Hu, Y. Wang, H. L. W. Chan: Ceram. Int. Vol. 35, (2009), p.953.

Google Scholar

[14] G. -Z. Zang, X. -F. Wang, L. -B. Li, H. -F. Guo, Q. -D. Chen: J. Electroceram. Vol. 31 (2013), p.134.

Google Scholar

[15] G. -Z. Zang, L. -B. Li, H. -H. Liu, X. -F. Wang, Z. -G. Gai: J. Alloy. Compd. Vol. 580 (2013), p.611.

Google Scholar

[16] P. R. Emtage: J. Appl. Phys. Vol. 48 (1977), p.4372.

Google Scholar

[17] G. Garcia-Belmonte, J. Bisquert, F. Fabregat-Santiago: Solid-State Electron. Vol. 43 (1999), p.2123.

Google Scholar

[18] P. R. Bueno, M. M. Oliveira, W. K. Bacelar-Junior, E. R. Leite, E. Longo: J. Appl. Phys. Vol. 91 (2002), p.6007.

Google Scholar