[1]
J.W. Gu, Q.Y. Zhang, J. Dang, J.P. Zhang and S.J. Chen, Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polym, Bull. 62 (2009) 689-697.
DOI: 10.1007/s00289-009-0045-z
Google Scholar
[2]
V. N. Bogomolov, L.S. Parfeneva, L.M. Sorokin, I.A. Smirnov, H. Misiorek, A. Jezowski and J. Hutchison, Structural and thermal properties of the opal-epoxy resin nan˚Composite, Phys. Solid State 44 (2002) 1061-1066.
DOI: 10.1134/1.1485008
Google Scholar
[3]
Y.F. Chen, W. Yue, Z.Z. Bian, Y. Fan and Q.Q. Lei, Preparation and properties of KH550-Al2O3/PI–EP nan˚Composite material. Iran. Polym, Iran. Polym. J. 22 (2013) 377-383.
DOI: 10.1007/s13726-013-0137-3
Google Scholar
[4]
L.H. Sinh, B.T. Son, N.N. Trung, D.G. Lim, S. Shin and J.Y. Bae, Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly (ester amide) React, Funct. Polym. 72 (2012).
DOI: 10.1016/j.reactfunctpolym.2012.05.004
Google Scholar
[5]
H.W. He, K.X. Li, J. Wang, G.H. Sun, Y.Q. Li and J.L. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy Composites, Mater. Des. 32 (2011) 4521-4527.
DOI: 10.1016/j.matdes.2011.03.026
Google Scholar
[6]
Z.K. Yuan, J.H. Yu, B.L. Rao, H. Bai, N. Jiang, J. Gao and S.R. Lu, Enhanced Thermal Properties of Epoxy Composites by Using Hyperbranched Aromatic Polyamide Grafted Silicon Carbide Whiskers, Macromol. Res. 22 (2014) 405-411.
DOI: 10.1007/s13233-014-2049-2
Google Scholar
[7]
C.W. Hsu, C.C.M. Ma, C.S. Tan, H.T. Li, S.C. Huang, T.M. Lee and H. Tai, Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant, Mater. Chem. Phys. 134 (2012).
DOI: 10.1016/j.matchemphys.2012.03.070
Google Scholar
[8]
S.Q. Ma, W.Q. Liu, Z.F. Wang, C.H. Hu and C.Y. Tang, Simultaneously Increasing Impact Resistance and Thermal Properties of Epoxy Resins Modified by Polyether-Grafted-Epoxide Polysiloxane, Polym. Plast. Technol. Eng. 49 (2010) 467-473.
DOI: 10.1080/03602550903532190
Google Scholar
[9]
Z.D. Shi and X.L. Wang, Synthesis of α, ω-bis(3-aminopropyldiethoxylsilane) Poly(trifluoropropylmethyl)siloxanes, E. Polymer J. 041 (2007).
Google Scholar
[10]
M. Barrere, C. Maitre, M. A. Dourges, and P. Hemery, Anionic Polymerization of 1, 3, 5-Tris(trifluoropropylmethyl)cyclotrisiloxane (F3) in Miniemulsion, Macromol. 34 (2001) 7276-7280.
DOI: 10.1021/ma010559z
Google Scholar
[11]
Z.J. Song, J.L. Xie, P. H Zhou, X. Wang, T. Liu and L.J. Deng, Toughened polymer composites with flake carbonyl iron powders and their electromagnetic/absorption properties, J. Alloys Compd. (2013) 677-681.
DOI: 10.1016/j.jallcom.2012.11.065
Google Scholar
[12]
N.Y. Y. Kim and P.E. Laibinis, Derivatization of Porous Silicon by Grignard Reagents at Room Temperature, J. Am. Chem. S˚C. 120 (1998) 4516-4517.
DOI: 10.1021/ja9712231
Google Scholar
[13]
Z.D. Shi and X.L. Wang, Preparation and characterization of polyurethan-bl˚Ck-poly(trifluoro-propylmethyl)siloxane elastomers, Polym. Adv. Technol. 20 (2009) 1017–1023.
DOI: 10.1002/pat.1358
Google Scholar
[14]
S. Frings, H.A. Meinema, C.F. van Nostrum and R. van der Linde, Organic-inorganic hybrid coating for coil coating application based on polyesters and tetraethoxysilane, Prog. Org. Coat. 33 (1998) 126-130.
DOI: 10.1016/s0300-9440(98)00045-9
Google Scholar
[15]
S.T. Lin and S.K. Huang, Thermal degradation study of siloxane-dgeba epoxy copolymers, E. Polymer J. 33 (1997) 365-373.
DOI: 10.1016/s0014-3057(96)00175-9
Google Scholar