Study on Thermal Stability Properties of Epoxy Matrix/Fluorine and Silicon Composites

Article Preview

Abstract:

Fluorine and silicon resin has excellent thermal stability properties. The thermal stability properties of polymers modified by fluorine and silicon resin can be improved. In this paper, fluorine and silicon resin has been prepared by (1,3,5-tris(trifluoropropylmethyl)-cyclotrisiloxane and 3-aminopropyltriethoxysilane. The FTIR spectra and the 1H NMR spectrum showed the structure of fluorine silicon resin. The thermo gravimetric traces indicated that fluorine silicon resin had improved the thermal stability properties of epoxy matrix resin significantly. The temperature of decomposition velocity of unmodified epoxy matrix resin and modified epoxy matrix resin began to increase rapidly were 356oC, 375oC respectively. The final weight fraction of unmodified epoxy matrix resin and modified epoxy matrix resin were 4.6%, 6.5% , respectively. The temperature of the maximum rate of degradation were 398oC, 420oC, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-147

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Gu, Q.Y. Zhang, J. Dang, J.P. Zhang and S.J. Chen, Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polym, Bull. 62 (2009) 689-697.

DOI: 10.1007/s00289-009-0045-z

Google Scholar

[2] V. N. Bogomolov, L.S. Parfeneva, L.M. Sorokin, I.A. Smirnov, H. Misiorek, A. Jezowski and J. Hutchison, Structural and thermal properties of the opal-epoxy resin nan˚Composite, Phys. Solid State 44 (2002) 1061-1066.

DOI: 10.1134/1.1485008

Google Scholar

[3] Y.F. Chen, W. Yue, Z.Z. Bian, Y. Fan and Q.Q. Lei, Preparation and properties of KH550-Al2O3/PI–EP nan˚Composite material. Iran. Polym, Iran. Polym. J. 22 (2013) 377-383.

DOI: 10.1007/s13726-013-0137-3

Google Scholar

[4] L.H. Sinh, B.T. Son, N.N. Trung, D.G. Lim, S. Shin and J.Y. Bae, Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly (ester amide) React, Funct. Polym. 72 (2012).

DOI: 10.1016/j.reactfunctpolym.2012.05.004

Google Scholar

[5] H.W. He, K.X. Li, J. Wang, G.H. Sun, Y.Q. Li and J.L. Wang, Study on thermal and mechanical properties of nano-calcium carbonate/epoxy Composites, Mater. Des. 32 (2011) 4521-4527.

DOI: 10.1016/j.matdes.2011.03.026

Google Scholar

[6] Z.K. Yuan, J.H. Yu, B.L. Rao, H. Bai, N. Jiang, J. Gao and S.R. Lu, Enhanced Thermal Properties of Epoxy Composites by Using Hyperbranched Aromatic Polyamide Grafted Silicon Carbide Whiskers, Macromol. Res. 22 (2014) 405-411.

DOI: 10.1007/s13233-014-2049-2

Google Scholar

[7] C.W. Hsu, C.C.M. Ma, C.S. Tan, H.T. Li, S.C. Huang, T.M. Lee and H. Tai, Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant, Mater. Chem. Phys. 134 (2012).

DOI: 10.1016/j.matchemphys.2012.03.070

Google Scholar

[8] S.Q. Ma, W.Q. Liu, Z.F. Wang, C.H. Hu and C.Y. Tang, Simultaneously Increasing Impact Resistance and Thermal Properties of Epoxy Resins Modified by Polyether-Grafted-Epoxide Polysiloxane, Polym. Plast. Technol. Eng. 49 (2010) 467-473.

DOI: 10.1080/03602550903532190

Google Scholar

[9] Z.D. Shi and X.L. Wang, Synthesis of α, ω-bis(3-aminopropyldiethoxylsilane) Poly(trifluoropropylmethyl)siloxanes, E. Polymer J. 041 (2007).

Google Scholar

[10] M. Barrere, C. Maitre, M. A. Dourges, and P. Hemery, Anionic Polymerization of 1, 3, 5-Tris(trifluoropropylmethyl)cyclotrisiloxane (F3) in Miniemulsion, Macromol. 34 (2001) 7276-7280.

DOI: 10.1021/ma010559z

Google Scholar

[11] Z.J. Song, J.L. Xie, P. H Zhou, X. Wang, T. Liu and L.J. Deng, Toughened polymer composites with flake carbonyl iron powders and their electromagnetic/absorption properties, J. Alloys Compd. (2013) 677-681.

DOI: 10.1016/j.jallcom.2012.11.065

Google Scholar

[12] N.Y. Y. Kim and P.E. Laibinis, Derivatization of Porous Silicon by Grignard Reagents at Room Temperature, J. Am. Chem. S˚C. 120 (1998) 4516-4517.

DOI: 10.1021/ja9712231

Google Scholar

[13] Z.D. Shi and X.L. Wang, Preparation and characterization of polyurethan-bl˚Ck-poly(trifluoro-propylmethyl)siloxane elastomers, Polym. Adv. Technol. 20 (2009) 1017–1023.

DOI: 10.1002/pat.1358

Google Scholar

[14] S. Frings, H.A. Meinema, C.F. van Nostrum and R. van der Linde, Organic-inorganic hybrid coating for coil coating application based on polyesters and tetraethoxysilane, Prog. Org. Coat. 33 (1998) 126-130.

DOI: 10.1016/s0300-9440(98)00045-9

Google Scholar

[15] S.T. Lin and S.K. Huang, Thermal degradation study of siloxane-dgeba epoxy copolymers, E. Polymer J. 33 (1997) 365-373.

DOI: 10.1016/s0014-3057(96)00175-9

Google Scholar