Complex Adaptive Systems Integrating the Decision Making Process in Industrial Companies: A Scientific Conceptual Model

Article Preview

Abstract:

A company operating in a competitive and ever changing environment that wishes to be recognized as world class requires a management model that affords its executives a systemic vision. This article aims to describe a scientific conceptual model of an integrated support system for decision making (marketing, production, human resources and finance) for industrial companies based on the rules that originated in the theories and concepts of: (i) systemic administration; (ii) complex adaptive systems; and (iii) optimization methods (more specifically of artificial neural networks, the analytic hierarchy process and linear programing). The proposed model was presented to a group of 10 executives and consultants from industrial companies. The Collective Subject Discourse of these executives includes the possibility of having “tools” that guide their companies to World Class management, although the computerization and automation process of decision making can be “something” difficult and burdensome.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1601-1607

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.P. Morais. Uma visão sistêmica da gestão organizacional. São Paulo: Monitor Digital. (2006).

Google Scholar

[2] Fundação Nacional da Qualidade. Cadernos de excelência: introdução ao modelo de excelência em gestão. São Paulo: FNQ. (2012).

DOI: 10.14488/cneg2022_cneg_pt_001_0008_20178

Google Scholar

[3] R. Borgatti Neto. Perspectivas da complexidade aplicada à gestão de empresas. Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Produção. Tese de Doutorado. (2007).

DOI: 10.11606/9788580230703

Google Scholar

[4] R.D. Stacey. Strategic management and organizational dynamics: the challenge of Complexity. Harlow: Prentice Hall. (2007).

Google Scholar

[5] E. Morin. Introdução ao Pensamento Complexo. - Trad. Eliane Lisboa 3ª ed. Porto Alegre: Sulina. (2007).

Google Scholar

[6] K.A. Richardson. Managing complex organizations: complexity thinking and the science and art of management. Corporate Finance Review. (2008).

Google Scholar

[7] I.C. Petraglia. Estudos de complexidade. São Paulo: Xamã. (2006).

Google Scholar

[8] A.P. Braga; A.P.L.F. Carvalho; T.B. Ludermir. Redes neurais artificiais: teoria e aplicações. Rio de Janeiro: LTC. (2011).

Google Scholar

[9] M.T.A. Steiner. Redes neurais artificiais. Curitiba, PR. PUCPR. (2012).

Google Scholar

[10] Y. Bar-Yam. Dynamics of complex systems. Cambridge, MA: New England Complex System Institute(2003).

Google Scholar

[11] T.L. Saaty. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks. Pittsburgh: RWS Publications. (2005).

Google Scholar

[12] M.G. Carneiro; F.J. Sabai. Redes neurais de tipos e variações candles em séries temporais de candlesticks. VII ENACOMP, Goiás. (2010).

Google Scholar

[13] D. Wollmann; M.T.A. Steiner; G.E. Vieira; P.A. Steiner. Details of the analytic hierarchy process technique for the evaluation of health insurance companies. Produção (São Paulo. Impresso), pp.1-10. (2013).

DOI: 10.1590/s0103-65132013005000070

Google Scholar

[14] S.C. Martinez; L.F.P. Ferrara; M.C. Mario. Análise de um aproximador funcional utilizando as Redes Neurais artificiais MLP treinada com o algoritmo Backpropagation. UNISANTA - Science and Technology, pp.1-6, v. 1, n. 1. (2012).

DOI: 10.14393/ufu.di.2003.49

Google Scholar

[15] F.S. Hillier.; G.J. Lieberman. Introdução à Pesquisa Operacional, Porto Alegre: AMGH. (2013).

Google Scholar

[16] F. Lefevre; A.M. Lefevre. O discurso do sujeito coletivo: um novo enfoque em pesquisa qualitativa – desdobramentos. Caxias do Sul. Educs. (2003).

Google Scholar