[1]
Hong Kong Tourism Board. Yearly Visitor Arrivals & Spending Hit New Heights. English Language Press Releases, Hong Kong Tourism Board (2011).
Google Scholar
[2]
British Petroleum. BP Statistical Review of World Energy. June (2013).
Google Scholar
[3]
Census and Statistics Department, Hong Kong Special Administrative Region. Hong Kong Energy Statistics 2011 Annual Report. Hong Kong, People's Republic of China (2012).
DOI: 10.1093/oso/9780198738466.003.0006
Google Scholar
[4]
L. Suganthi, A.A. Samuel: Energy models for demand forecasting–A review. Renewable and Sustainable Energy Reviews Vol. 16(2) (2012), pp.1223-1240.
DOI: 10.1016/j.rser.2011.08.014
Google Scholar
[5]
Z. Tao, Y.C. Wong: Hong Kong: from an industrial city to a centre of manufacturing-related services. Urban Studies Vol. 39 (12) (2002), pp.2345-2358.
DOI: 10.1080/0042098022000033917
Google Scholar
[6]
M. Kankal, A. Akpinar, M. Kömürcü, T.S. Özsahin: Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables. Applied Energy Vol. 88 (2011), p.1927-(1939).
DOI: 10.1016/j.apenergy.2010.12.005
Google Scholar
[7]
P. Zou, J. Yang, J. Fu, G. Liu, and D. Li: Artificial neural network and time series models for predicting soil salt and water content. Agricultural Water Management Vol. 97(12) (2010), p.2009–(2019).
DOI: 10.1016/j.agwat.2010.02.011
Google Scholar
[8]
M. Xu, T.C. Wong, and K.S. Chin: Modeling daily patient arrivals at Emergency Department and quantifying the relative importance of contributing variables using artificial neural network, Decision Support Systems Vol. 54(3) (2013), p.1488–1498.
DOI: 10.1016/j.dss.2012.12.019
Google Scholar
[9]
V.Ş. Ediger, and S. Akar: ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy Vol. 35 (2007), pp.1701-1708.
DOI: 10.1016/j.enpol.2006.05.009
Google Scholar
[10]
F.K. Chuang, C.Y. Hung, C.Y. Chang and Kuo-Cheng Kuo: Deploying arima and artificial neural networks models to predict energy consumption in Taiwan, Sensor Letters Vol. 11 (2013), p.2333–2340.
DOI: 10.1166/sl.2013.3087
Google Scholar
[11]
L.A. Díaz-Robles, J.C. Ortega, J.S. Fu, G.D. Reed, J.C. Chow and J.G. Watson, J.A. and Moncada-Herrera: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmospheric Environment 2008, Vol. 42 (2008).
DOI: 10.1016/j.atmosenv.2008.07.020
Google Scholar
[12]
D.O. Faruk: A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence Vol. 23 (2010), pp.586-594.
DOI: 10.1016/j.engappai.2009.09.015
Google Scholar
[13]
H.W. Kim, J.H. Lee, and Y.H. Choi: Dynamic bandwidth provisioning using ARIMA-based traffic forecasting for mobile WiMAX. Computer Communications Vol. 34 (2011), pp.99-106.
DOI: 10.1016/j.comcom.2010.08.008
Google Scholar
[14]
V.R. Prybotok, J.S. Yi and D. Mitchell: Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations European Journal of Operational Research Vol. 122 (2000), pp.31-40.
DOI: 10.1016/s0377-2217(99)00069-7
Google Scholar
[15]
J-C. Gutierrez-Estrada, Z,E. De Pedro-San, R. López-Luque and I. Pulido-Calvo: Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L. ) intensive rearing system. Aquacultural Engineering Vol. 31(3-4) (2004).
DOI: 10.1016/j.aquaeng.2004.03.001
Google Scholar
[16]
E. Cadenas and W. Rivera: Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANNs model. Renewable Energy Vol. 35 (2010), pp.2732-2738.
DOI: 10.1016/j.renene.2010.04.022
Google Scholar
[17]
A.P. Ansuj, M.E. Camargo, R. Radharamanan, and D.G. Petry: Sales forecasting using time series and neural networks. Computers and Industrial Engineering Vol. 31 (1996), pp.421-424.
DOI: 10.1016/0360-8352(96)00166-0
Google Scholar
[18]
K. Kandananond: Forecasting electricity demand in Thailand with an artificial neural network approach Energies Vol. 4(8), (2011) pp.1246-1257.
DOI: 10.3390/en4081246
Google Scholar
[19]
D. Suh and S. Chang: An energy and water resource demand estimation model for multi-family housing complexes in Korea. Energies Vol. 5(11) (2012), pp.4497-451.
DOI: 10.3390/en5114497
Google Scholar
[20]
B. Zhu: A novel multiscale ensemble carbon price prediction model integrating empirical mode decomposition, genetic algorithm and artificial neural network. Energies Vol. 5(2) (2012), pp.355-370.
DOI: 10.3390/en5020355
Google Scholar
[21]
V. Bianco, O. Manca and S. Nardini: Electricity consumption forecasting in Italy using linear regression models. Energy Vol. 34(9) (2009), p.1413–1421.
DOI: 10.1016/j.energy.2009.06.034
Google Scholar
[22]
Information Services Department, Hong Kong Special Administrative Region Government, Hong Kong. The facts: Hong Kong as a Service Economy (2012).
DOI: 10.18057/ijasc.2007.3.2.3
Google Scholar
[23]
Hong Kong Tourism Industry. Economic Focus 2011 (2011).
Google Scholar
[24]
A. Kraft, and J. Kraft: On the relationship between energy and GNP. Journal of Energy Development Vol. 3, (1978), pp.401-403.
Google Scholar
[25]
A. Acaravci and I. Ozturk: On the relationship between energy consumption, CO2 emissions and economic growth in Europe Energy Vol. 35(12) (2010), pp.5412-5420.
DOI: 10.1016/j.energy.2010.07.009
Google Scholar
[26]
K.C. Kuo, C.Y. Chang, M.H. Chen and W.Y. Chen: In search of causal relationship between FDI, GDP, and energy consumption-evidence from China Advanced Materials Research Vol. 524-527 (2012), pp.3388-3391.
DOI: 10.4028/www.scientific.net/amr.524-527.3388
Google Scholar
[27]
S.L. Lai, K.C. Kuo, P. Kanyasathaporn and M. Liu: The causal relationship between economic growth, energy consumption and CO2 emissions in Hong Kong, Energy Education Science and Technology Part A: Energy Science and Research 2014 Vol. 32(1) (2014).
Google Scholar
[28]
F. Halicioglu: A dynamic econometric study of income, energy and exports in Turkey. Energy Vol. 36(5) (2011), p.3348–3354.
DOI: 10.1016/j.energy.2011.03.031
Google Scholar
[29]
K.C. Kuo, M. Liu and S.L. Lai: Effect of tourism development on energy consumption, CO2 and economic growth in China. Advanced Materials Research Vol. 524-527 (2012), pp.3380-3383.
DOI: 10.4028/www.scientific.net/amr.524-527.3380
Google Scholar
[30]
C.Y. Ho and K.W. Siu: A dynamic equilibrium of electricity consumption and GDP in Hong Kong: An empirical investigation. Energy Policy Vol. 35 (4) (2007), p.2507–2513.
DOI: 10.1016/j.enpol.2006.09.018
Google Scholar
[31]
L. Li, Z. Tan, J. Wang, J. Xu, C. Cai and Y. Hou: Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy Vol. 39(6) (2011), pp.3669-3679.
DOI: 10.1016/j.enpol.2011.03.073
Google Scholar
[32]
H.T. Pao and C.M. Tsai: Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy Vol. 36 (2011).
DOI: 10.1016/j.energy.2010.09.041
Google Scholar
[33]
H.H. Lean and R. Smyth: On the dynamics of aggregate output, electricity consumption and exports in Malaysia: Evidence from multivariate Granger causality tests. Applied Energy Vol. 87 (2010), p.1963-(1971).
DOI: 10.1016/j.apenergy.2009.11.017
Google Scholar
[34]
C.C. Lee and C.P. Chang: The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan. Energy Vol. 32 (2007), pp.2282-2294.
DOI: 10.1016/j.energy.2006.01.017
Google Scholar
[35]
X.P. Zhang and X.M. Cheng: Energy consumption, carbon emissions, and economic growth in China. Ecological Economics Vol. 68 (2009), pp.2706-2712.
DOI: 10.1016/j.ecolecon.2009.05.011
Google Scholar
[36]
Z.W. Geem and W.E. Roper: Energy demand estimation of South Korea using artificial neural network. Energy Policy Vol. 37 (2009), pp.4049-4054.
DOI: 10.1016/j.enpol.2009.04.049
Google Scholar
[37]
K. Kavaklioglu, H. Ceylan, H.K. Ozturk and O.E. Canyurt: Modeling and prediction of Turkey's electricity consumption using artificial neural networks. Energy Convers Manage Vol. 50 (2009), pp.2719-2727.
DOI: 10.1016/j.enconman.2009.06.016
Google Scholar
[38]
S. Becken and D.G. Simmons: Understanding energy consumption patterns of tourist attractions and activities in New Zealand. Tourism Management Vol. 23(4) (2002), pp.343-354.
DOI: 10.1016/s0261-5177(01)00091-7
Google Scholar
[39]
J. Liu, T. Feng and X. Yang: The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city. Renewable and Sustainable Energy Reviews Vol. 15 (2011), pp.2887-2894.
DOI: 10.1016/j.rser.2011.02.029
Google Scholar
[40]
W.M. To, T.M. Lai and W.L. Chung: Fuel life cycle emissions for electricity consumption in the world's gaming center–Macao SAR, China. Energy Vol. 36 (2011), p.5162–5168.
DOI: 10.1016/j.energy.2011.06.019
Google Scholar
[41]
T.M. Lai, W.M. To, W.C. Lo and Y.S. Choy: Modeling of electricity consumption in the Asian gaming and tourism center: Macao SAR, People's Republic of China. Energy Vol. 33 (2008), pp.678-688.
DOI: 10.1016/j.energy.2007.12.007
Google Scholar
[42]
T.M. Lai, W.M. To, W.C. Lo, Y.S. Choy and K.H. Lam: The causal relationship between electricity consumption and economic growth in a Gaming and Tourism Center: The case of Macao SAR, the People's Republic of China. Energy Vol. 36 (2011).
DOI: 10.1016/j.energy.2010.11.036
Google Scholar
[43]
A. Azadeh, S.F. Ghaderi and S. Sohrabkhani: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy Vol. 36(7) (2008), pp.2637-2644.
DOI: 10.1016/j.enpol.2008.02.035
Google Scholar
[44]
H.T. Pao: Comparing linear and nonlinear forecasts for Taiwan's electricity consumption. Energy Vol. 31 (2006), pp.2129-2142.
DOI: 10.1016/j.energy.2005.08.010
Google Scholar
[45]
A. Sözen and E. Arcaklioglu: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey. Energy Policy Vol. 35 (2007), pp.4981-4992.
DOI: 10.1016/j.enpol.2007.04.029
Google Scholar
[46]
G.A. Darbellay and M. Slama: Forecasting the short-term demand for electricity: do neural networks stand a better chance. International Journal of Forecasting Vol. 16 (2000), pp.71-83.
DOI: 10.1016/s0169-2070(99)00045-x
Google Scholar
[47]
K. Hornik, M. Stinnchcombe and H. White: Multi-layer feed forward networks are universal approximators. Neural Networks Vol. 2(5) (1989), p.359–366.
DOI: 10.1016/0893-6080(89)90020-8
Google Scholar
[48]
M. Khashei and M.A. Bijari: Novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing Vol. 11 (2011), pp.2664-2675.
DOI: 10.1016/j.asoc.2010.10.015
Google Scholar
[49]
U. Yolcu, E. Egrioglu and C.H. Aladag: A new linear & nonlinear artificial neural network model for time series forecasting, Decision Support Systems Vol. 54(3) (2013), p.1340–1347.
DOI: 10.1016/j.dss.2012.12.006
Google Scholar
[50]
C.J. Lu, T.S. Lee and C.M. Lian: Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks, Decision Support Systems, Vol. 54(1) (2012), p.584–596.
DOI: 10.1016/j.dss.2012.08.006
Google Scholar
[51]
M. Khashei, M. Bijari and G.A.R. Ardali: Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing Vol. 72(4-6) (2009), pp.956-967.
DOI: 10.1016/j.neucom.2008.04.017
Google Scholar
[52]
M. Kutner, C. Nachtsheim, J. Neter and W. Li: Applied Linear Statistical Models, 5th ed. McGraw-Hill: Irwin (2005).
Google Scholar
[53]
G.E.P. Box, G.W. Jenkins and G. Reinsel: Time Series Analysis, Forecasting, and Control, 3rd ed. Prentice Hall: Englewood Cliffs, N.J. (1994).
Google Scholar
[54]
G.P. Zhang: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing Vol. 50 (2003), p.159–175.
DOI: 10.1016/s0925-2312(01)00702-0
Google Scholar
[55]
S.A. DeLurgio: Forecasting Principles and Applications. McGraw-Hill: Irwin (1998).
Google Scholar
[56]
J.H. Wilson and B. Keating: Business Forecasting with Forecast XTM, 6th ed. John Galt Solutions, Inc., McGraw-Hill: Irwin (2009).
Google Scholar
[57]
F.X. Diebold: Elements of Forecasting, 4th ed. Thomson: South-western (2007).
Google Scholar
[58]
M. Belloumi: Energy consumption and GDP in Tunisia: cointegration and causality analysis. Energy Policy Vol. 37(7) (2009), pp.2745-2753.
DOI: 10.1016/j.enpol.2009.03.027
Google Scholar
[59]
N. Bowden and J.E. Payne: The causal relationship between US energy consumption and real output: a disaggregated analysis. Journal of Policy Modeling Vol. 31(2) (2009), pp.180-188.
DOI: 10.1016/j.jpolmod.2008.09.001
Google Scholar
[60]
G. Erdal, H. Erdal and K. Esengün: The causality between energy consumption and economic growth in Turkey. Energy Policy Vol. 36(10) (2008), pp.3838-3842.
DOI: 10.1016/j.enpol.2008.07.012
Google Scholar
[61]
M. Liu, S.L. Lai and K.C. Kuo: Economic growth, energy consumption and tourism development in Taiwan: A granger causality approach, Advanced Materials Research Vol. 524-527 (2012), pp.3376-3379.
DOI: 10.4028/www.scientific.net/amr.524-527.3376
Google Scholar
[62]
D. Hwang and B. Gum: The causal relationship between energy and GNP: the case of Taiwan. Journal of Energy Development Vol. 16 (1991), pp.219-226.
Google Scholar
[63]
Y. Wang, J. Zhou, X. Zhu and G. Lu: Energy consumption and economic growth in China: A multivariate causality test. Energy Policy Vol. 39(7) (2011), pp.4399-4406.
DOI: 10.1016/j.enpol.2011.04.063
Google Scholar
[64]
A. Kaya and M. Yalcintas: Energy consumption trends in Hawaii. Energy Vol. 35 (2012), pp.1363-1367.
DOI: 10.1016/j.energy.2009.11.019
Google Scholar
[65]
G. Escrivá-Escrivá, C. Álvarez-Bel, C. Roldán-Blay and M. Alcázar-Ortega: New artificial neural network prediction method for electrical consumption forecasting based on building end-use. Energy and Buildings, Vol. 43(11) (2011), pp.3112-3119.
DOI: 10.1016/j.enbuild.2011.08.008
Google Scholar
[66]
V. Jothiprakash and R.B. Magar: Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. Journal of Hydrology Vol. 450-451 (2012), pp.293-307.
DOI: 10.1016/j.jhydrol.2012.04.045
Google Scholar
[67]
E. Pisoni, M. Farina, C. Carnevale and L. Piroddi: Forecasting peak air pollution levels using NARX models. Engineering Applications of Artificial Intelligence Vol. 22 (2009), pp.593-602.
DOI: 10.1016/j.engappai.2009.04.002
Google Scholar
[68]
I. Drezga and S. Rahman: Input variable selection for ANNs-based short-term load forecasting. IEEE Transactions on Power Systems Vol. 13(4) (1998), p.1238–1244.
DOI: 10.1109/59.736244
Google Scholar
[69]
P. Pérez and J. Reyes: Prediction of maximum of 24-h average of PM10 concentrations 30-h in advance in Santiago, Chile. Atmospheric Environment Vol. 36 (2002), p.4555–4561.
DOI: 10.1016/s1352-2310(02)00419-3
Google Scholar
[70]
S.I.V. Sousa, F.G. Martins, M.C. Pereira and M.C.M. Alvim-Ferraz: Prediction of ozone concentrations in Oporto City with statistical approaches. Chemosphere Vol. 64(7) (2006), pp.1141-1149.
DOI: 10.1016/j.chemosphere.2005.11.051
Google Scholar
[71]
S. Thomas and R.B. Jacko: Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models. Journal of the Air & Waste Management Association Vol. 57 (2007).
DOI: 10.3155/1047-3289.57.4.480
Google Scholar
[72]
G. Zhang, B.E. Patuwo and M.Y. Hu: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting Vol. 14 (1998), pp.35-62.
DOI: 10.1016/s0169-2070(97)00044-7
Google Scholar