Hydrothermal Synthesis and Electrochemical Performance of LiNi0.5Mn0.5O2 as Lithium-Ion Battery Cathode

Article Preview

Abstract:

Hydrothermal method was successfully employed to synthesize LiNi0.5Mn0.5O2 and the crystallinity of the resultant product was further improved by an annealing process. The structural information of the final product was analyzed by X-ray diffraction (XRD) and Rietveld refinement. The results showed that the Li/Ni exchange rate of hydrothermal samples was lower than traditional solid state method. Because of the improvement of the crystallinity the capacity of the annealed product was much better than that of the as prepared hydrothermal product. The capacity of annealed sample maintained 100mAh/g after 100 charge/discharge cycles. ICP-OES element analysis show that both hydrothermal and annealed samples are non-stoichiometric due to the existence of high valence Ni3+ and Mn4+ ions in LiNi0.5Mn0.5O2 samples which might be largely responsible for the lower electrochemical capacity. Our work demonstrated that stoichiometric LiNi0.5Mn0.5O2 with lower Li/Ni exchange could be synthesized by hydrothermal method when suitable oxidants were selected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

638-645

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.

Google Scholar

[2] K.S. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science, 311 (2006) 977-980.

Google Scholar

[3] J.W. Fergus, J. Power Sources, 195 (2010) 939-954.

Google Scholar

[4] J.B. Goodenough, Y. Kim, Chem. Mater., 22 (2010) 587-603.

Google Scholar

[5] M.S. Whittingham, Chem. Rev., 104 (2004) 4271-4301.

Google Scholar

[6] B.L. Ellis, K.T. Lee, L.F. Nazar, Chem. Mater., 22 (2010) 691-714.

Google Scholar

[7] B. Dunn, H. Kamath, J.M. Tarascon, Science, 334 (2011) 928-935.

Google Scholar

[8] M.K. Song, S. Park, F.M. Alamgir, J. Cho, M.L. Liu, Materials Science & Engineering R-Reports, 72 (2011) 203-252.

Google Scholar

[9] Z.H. Chen, J.R. Dahn, Electrochim. Acta, 49 (2004) 1079-1090.

Google Scholar

[10] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H.S. Zhou, I. Honma, J. Am. Chem. Soc., 129 (2007) 7444-7452.

DOI: 10.1021/ja0681927

Google Scholar

[11] D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y.S. Cohen, H.J. Kim, M. Schmidt, Electrochim. Acta, 47 (2002) 4291-4306.

DOI: 10.1016/s0013-4686(02)00417-6

Google Scholar

[12] E. Antolini, Solid State Ionics, 170 (2004) 159-171.

Google Scholar

[13] V. Bianchi, D. Caurant, N. Baffier, C. Belhomme, E. Chappel, G. Chouteau, S. Bach, J.P. Pereira-Ramos, A. Sulpice, P. Wilmann, Solid State Ionics, 140 (2001) 1-17.

Google Scholar

[14] R. Chitrakar, H. Kanoh, Y.S. Kim, Y. Miyai, K. Ooi, J. Solid State Chem., 160 (2001) 69-76.

Google Scholar

[15] K. Sakamoto, M. Hirayama, H. Konishi, N. Sonoyama, N. Dupre, D. Guyomard, K. Tamura, J. Mizuki, R. Kanno, PCCP, 12 (2010) 3815-3823.

Google Scholar

[16] Y.Z. Sun, P.Y. Wan, J.Q. Pan, C.C. Xu, X.G. Liu, Solid State Ionics, 177 (2006) 1173-1177.

Google Scholar

[17] N.Q. Ye, C.J. Liu, S.Y. Shen, Journal of Inorganic Materials, 19 (2004) 1217-1224.

Google Scholar

[18] Y.S. Lee, Y.K. Sun, K. Adachi, M. Yoshio, Electrochim. Acta, 48 (2003) 1031-1039.

Google Scholar

[19] A.R. Armstrong, P.G. Bruce, Nature, 381 (1996) 499-500.

Google Scholar

[20] J. Reed, G. Ceder, A. Van der Ven, Electrochemical and Solid State Letters, 4 (2001) A78-A81.

Google Scholar

[21] Q. Liu, Y.X. Li, Z.L. Hu, D.L. Mao, C.K. Chang, F.Q. Huang, Electrochim. Acta, 53 (2008) 7298-7302.

Google Scholar

[22] S. Gopukumar, K.Y. Chung, K.B. Kim, Electrochim. Acta, 49 (2004) 803-810.

Google Scholar

[23] J. Breger, Y.S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shao-Horn, G. Ceder, C.P. Grey, Chem. Mater., 18 (2006) 4768-4781.

Google Scholar

[24] H. Xia, S.B. Tang, L. Lu, J. Alloys Compd., 449 (2008) 296-299.

Google Scholar

[25] X.L. Meng, S.M. Dou, W.L. Wang, J. Power Sources, 184 (2008) 489-493.

Google Scholar

[26] K.S. Lee, S.T. Myung, J.S.M. Moon, Y.K. Sun, Electrochim. Acta, 53 (2008) 6033-6037.

Google Scholar

[27] R. Shannon, Acta Crystallographica Section A, 32 (1976) 751-767.

Google Scholar

[28] J. Breger, K. Kang, J. Cabana, G. Ceder, C.P. Grey, J. Mater. Chem., 17 (2007) 3167-3174.

Google Scholar

[29] X. Xiao, L. Wang, D. Wang, X. He, Q. Peng, Y. Li, Nano Research, 2 (2010) 923-930.

Google Scholar

[30] X. Xiao, L. Yang, H. Zhao, Z. Hu, Y. Li, Nano Research, 5 (2011) 27-32.

Google Scholar

[31] X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Nature, 437 (2005) 121-124.

Google Scholar

[32] S.H. Feng, R.R. Xu, Acc. Chem. Res., 34 (2001) 239-247.

Google Scholar

[33] X. Xiao, L. Wang, D. Wang, X. He, Q. Peng, Y. Li, Nano Research, 2 (2009) 923-930.

Google Scholar

[34] K. Ariyoshi, T. Ichikawa, T. Ohzuku, J. Phys. Chem. Solids, 69 (2008) 1238-1241.

Google Scholar

[35] H. Kobayashi, H. Sakaebe, H. Kageyama, K. Tatsumi, Y. Arachi, T. Kamiyama, J. Mater. Chem., 13 (2003) 590-595.

DOI: 10.1039/b211558a

Google Scholar

[36] J. Reed, G. Ceder, Electrochemical and Solid State Letters, 5 (2002) A145-A148.

Google Scholar

[37] S.H. Kang, J. Kim, M.E. Stoll, D. Abraham, Y.K. Sun, K. Amine, J. Power Sources, 112 (2002) 41-48.

Google Scholar

[38] A.F. Carley, S.D. Jackson, J.N. O'Shea, M.W. Roberts, Surf. Sci., 440 (1999) L868-L874.

Google Scholar

[39] K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Electrochim. Acta, 48 (2003) 1505-1514.

Google Scholar