The Effect of Temperature on the Morphology and Electrochemical Performance of Li3V2(Po4)3 Cathode Material

Article Preview

Abstract:

Li3V2(PO4)3 cathode materials were synthesized by a sol-gel method. The effect of sintering temperature on the morphology and electrochemical performance of Li3V2(PO4)3 product was studied. XRD, SEM and galvanostatic charge/discharge tests were used to analysis the structure and electrochemical performance of Li3V2(PO4)3 materials. The results indicate that 800 °C was a suitable temperature to synthesize Li3V2(PO4)3 materials. The product synthesized at that temperature has more uniform particle and shows higher capacity than other materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

708-711

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Rui, Q. Yan, M. Skyllas-Kazacos, T. Mariana: J. Power Source. Vol 258 (2014), P. 19.

Google Scholar

[2] H. Xiang, H. Wang, C. Chen, X. Ge, S. Gu. o, J. Sun, W. Hu: J. Power Sources. Vol 191(2009), P. 575.

Google Scholar

[3] B. Jin, H. B. Gu, K. W. Kim: J. Solid State Electrochem. Vol 12(2008), P. 105.

Google Scholar

[4] Y. Hong, Z. Tang, Z. Hong, Z. Zhang: J. Power Sources. Vol 248(2014), P. 655.

Google Scholar

[5] A. Fedorkova, R. Orinakova, A. Orinak, H. D. Wiemhofer, D. Kaniansky: J. Solid State Electrochem. Vol 14(2010), P. 2173.

Google Scholar

[6] Y. Sun, S. Oh, H. Park, B. Scrosati, Micrometer-sized: Adv. Mater. Vol 23(2011), P. 5050.

Google Scholar

[7] L. Damen, J. Hassoun, M. Mastragostino, B. Scrosati: J. Power Source. Vol 195(2010), P. 6902.

Google Scholar

[8] C. Deng, S. Zhang, S. Yang, Y. Gao, B. Wu, L. Ma, B. Fu, Q. Wu, F. Liu: The J. Physical and Chemistry. Vol 115(2011), P. 15048.

Google Scholar

[9] G. Mateyshina, N. Uvarov: J. Power Sources. Vol 196(2011), P. 1494.

Google Scholar

[10] L. Chen, B. Yan, Y. Xie, S. Wang, X. Jiang, G. Yang: J. Power Sources. Vol 261(2014), P. 188.

Google Scholar

[11] M. Ren, Z. Zhou, Y. Li, X. Gao, J. Yan: J. Power Sources. Vol 162(2006), P. 1357.

Google Scholar

[12] L. Zhang, X. Zhang, Y. Sun, W. Luo, X. Hu, X. Wu, Y. Huanga: J. Electrochemi. Soc. Vol 158(2011), P. A924.

Google Scholar

[13] C. Sun, S. Rajasekhara, Y. Dong, John B. Goodenough: American Chemical Soc. Vol 3(2011), P. 3772.

Google Scholar

[14] F. Teng, Z. Hu, X. Ma, L. Zhang, C. Ding, Y. Yu, C. Chen: Electrochimica Acta. Vol 91(2013), P. 43.

Google Scholar

[15] A. Cho, J. Son, V. Aravindan, H. Kim, K. Kang, W. Yoon, W. Kim, Y. Lee: J. Mater. Chen. Vol 22(2012), P. 6556.

Google Scholar

[16] J. Kim, J. Yoo, Y. Jung, K. Kang: Adv. Energy Mater. Vol 3(2013), P. 1004.

Google Scholar

[17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov: Nature. Vol 438(2005), P. 197.

DOI: 10.1038/nature04233

Google Scholar

[18] S. Wang, Z. Zhang, Z. Jiang, A. Deb, L. Yang, S. Hirano: J. Power Sources. Vol 253(2014), P. 294.

Google Scholar

[19] C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, J. Sun: Electrochima Acta. Vol 54 (2008), P. 623.

Google Scholar

[20] M. Sato, H. Ohkawa, K. Yoshida, M. Saito, K. Uemastu, K. Toda: Solid State Ionics. Vol 135 (2000), P. 137.

Google Scholar

[21] J. C. Zheng, X. H. Li, Z. X. Wang, H. J. Guo, Q. Y. Hu, W. J. Peng: J. Power Sources. Vol 189 (2009), P. 476.

Google Scholar