The Structural and Hydrogen Storage Properties of Al-Doped Boron Nitride Nanotube

Article Preview

Abstract:

The geometrical structures and electronical properties, as well as hydrogen storage of Al-doped boron nitride nanotube have been investigated using first principles based on density functional theory. The results show that the symmetry of boron nitride nanotube is destroyed slightly by doping one Al atom. Furthermore, physical absorption is found due to the small average absorption energy of Al-BNNT-nH2, which indicates that this hydrogen absorption will occurs at room temperature. In addition, some novel structures presenting almost same absorption behaviors are predicted, which will offer useful information to future experimental investigation on the design of hydrogen storage materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

712-715

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49 (1994), 5081R.

Google Scholar

[2] N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, et al., Science 269 (1995), pp.966-967.

DOI: 10.1126/science.269.5226.966

Google Scholar

[3] Y. Yu, H. Chen, Y. Liu, T. White, Y. Chen, Mater. Lett. 80 (2012), pp.148-151.

Google Scholar

[4] T. Ikuno, T. Sainsbury, D. Okawa, J.M.J. Frechet, A. Zettl, Solid State Commun. 142 (2007), pp.643-646.

DOI: 10.1016/j.ssc.2007.04.010

Google Scholar

[5] A. Soltani, N. Ahmadian, A. Amirazami, A. Masoodi, E. Tazikeh Lemeski, A. Varasteh Moradi, Appl. Surf. Sci. 261 (2012), pp.262-267.

DOI: 10.1016/j.apsusc.2012.07.158

Google Scholar

[6] A. Soltani, N. Ahmadian, Y. Kanani, A. Dehnokhalaji, H. Mighani, Appl. Surf. Sci. 258 (2012), pp.9536-9543.

DOI: 10.1016/j.apsusc.2012.05.109

Google Scholar

[7] X. J Wu and X. C Zeng, J. Chem. Phys. 125, 044711 (2006).

Google Scholar

[8] M. Ishigami, J. D. San, S. Aloni, M. L. Cohen, and A. Zettl, Phys. Rev. Lett. 94, 056804 (2005).

Google Scholar

[9] E Shakerzadeh and S Noorizadeh, Physica E 57 (2014), pp.47-55.

Google Scholar

[10] X. J Wu, J. L Yang, J. G. Hou, and Q. S Zhu, J. Chem. Phys. 121, 8481 (2004).

Google Scholar

[11] E. Durgun, Y. R. Jang, and S. Ciraci, Phys. Rev. B 76, 073413 (2007).

Google Scholar

[12] B. Kiran, P. Jena, X. Li, A. Grubisic, S. T. Stokes, G. F. Ganteför, K. H. Bowen, R. Burgert, and H. Schnöckel, Phys. Rev. Lett. 98, 256802 (2007).

DOI: 10.1103/physrevlett.100.199702

Google Scholar

[13] The DMol3 is a registered software product of Accelrys Inc.

Google Scholar

[14] S. Zeynali, S. Ketabi, and H. R. Aghabozorg, J. Comput. Theor. Nanosci. 11 (2014), p.1317–1322.

Google Scholar