Swelling and Antibacterial Properties of Chitosan/Poly(vinyl alcohol) Hybrid Hydrogels

Article Preview

Abstract:

Chitosan (CTS) was added into poly (vinyl alcohol) (PVA) hydrogels to get their antibacterial properties. A series of CTS/PVA hybrid hydrogels were prepared by freezing/thawing method. The swelling properties of all hybrid hydrogels are better than those of the original PVA hydrogel. The CTS/PVA hybrid hydrogels show excellent antimicrobial performance towards Escherichia colis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

737-740

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.E. Orrego, N. Salgado and J.S. Valencia: Carbohydr. Polym. Vol. 79 (2010), P. 9-16.

Google Scholar

[2] I.R. Rodrigues, M.M.C. Forte and D.S. Azambuja: React. Funct. Polym. Vol. 67 (2007), P. 708-715.

Google Scholar

[3] X.Y. Shi, T.W. Tan: Biomaterials. Vol. 23 (2002), P. 4469.

Google Scholar

[4] A.M. Abdel-Mohsen, A.S. Aly and R. Hrdina: J. Polym. Environ. Vol. 19 (2012), P. 1005-1012.

Google Scholar

[5] D.K. Kweon, S.B. Song and Y.Y. Park: Biomaterials. Vol. 24 (2003), P. 1595.

Google Scholar

[6] S. Zivanovic, J. Li and P. M. Davidson: Biomacromolecules. Vol. 8 (2007), P. 1505-1510.

Google Scholar

[7] M. Zeng, Z. Fang and C. Xu: Membr Sci. Vol. 230 (2004), P. 175-181.

Google Scholar

[8] A.H. Doulabi, H. Mirzadeh and M. Imani: Carbohydr. Polym. Vol. 92 (2013), P. 48-56.

Google Scholar

[9] B. Zhou, Y. Hu and J. Li: Int. J. Biol. Macromol. Vol. 64 (2014), P. 402-408.

Google Scholar

[10] S. Xin, X. Li and Z. Ma: Carbohydr. Polym. Vol. 92 (2013), P. 1880-1886.

Google Scholar

[11] R. Nigmatullin, V. Konovalova and V. Pobigay: J. Appl. Polym. Sci. Vol. 111 (2009), P. 1697-1705.

Google Scholar

[12] F. Kara, E.A. Aksoy and Z. Yuksekdag: Carbohydr. Polym. Vol. 112 (2014), P. 39-47.

Google Scholar

[13] P.C. Srinivasa, M.N. Ramesh and K.R. Kumar: Carbohydr. Polym. Vol. 53(2003), P. 43-48.

Google Scholar

[14] S. Tripathi, G.K. Mehrotra and P.K. Dutta: Carbohydr. Polym. Vol. 79 (2010), P. 711-716.

Google Scholar

[15] S. Jiang, S. Liu and W. Feng: Behav. Biomed. Vol. 4 (2011), P. 1228-1233.

Google Scholar

[16] R.D. Pavaloiu, A. Stoica-Guzun and M. Stroescu,S. I: Int. J. Biol. Macromol. Vol. 68(2014), P. 117-124.

Google Scholar

[17] Y. Tanga, X. Wang and Y. Li: J. Knill, Carbohyd. Polym. Vol. 82 (2010), P. 833-841.

Google Scholar

[18] N.A. Peppas, in: B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (Eds. ), Biomaterials Science: An Introduction to Materials in Medicine, Academic, Toronto, 1996, p.62.

Google Scholar

[19] L.G. Wu, Y.T. Zhang and L.S. Cai: New Chem. Mater. Vol. 29 (2001), P. 18-21.

Google Scholar

[20] Q.Y. Yu, Y. Song and X. Shi: Carbohydr. Polym. Vol. 84 (2011), P. 465-470.

Google Scholar

[21] E.S. Costa-Júnior, E.F. Barbosa-Stancioli and A.A.P. Mansur: Carbohydr. Polym. Vol. 76 (2009), P. 472-481.

Google Scholar