Inactivation of Giardia intestinalis by H2O2/O3

Article Preview

Abstract:

The objective of this study was to investigate the effect of H2O2/O3 inactivating Giardia intestinali (G. intestinali) by the fluorescence staining method and vitro excystation. Results suggested that hydroxyl radicals (•OH) was the principal factor during the H2O2/O3 process by testing the effect of t-butyl alcohol (TBA) and concentration change of H2O2. The inactivation rate achieved 99.6% when independent addition of O3 under 1.5 mg·L-1 with contact time about 10.0 min. While to achieve the same inactivation effect by H2O2/O3, 1.0 mg·L-1 O3 ([H2O2]/[O3] molar ratio = 0.8) with 7.0 min was required. The inactivating capability was stronger under acidic condition than in alkaline environment. The effect of turbidity was also found to be significant in synthetic water, when turbidity increasing, the inactivating effect declined. Inactivation rate was improved with a temperature increase from 5 to 35 °C. When dissolved organic matter concentration in the reaction system increased, the competitive reaction between G. intestinal and organics with H2O2/O3 probably took place, thereby reducing the inactivation rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Halvor, N. Morten, H. Trygve, et al. : BMC Gastroenterology Vol. 12 (2012), p.1.

Google Scholar

[2] L. Xiao, Y. Feng: FEMS Immunology Medical Microbiology Vol. 52 (2008), p.309.

Google Scholar

[3] M. Shahiduzzaman, V. Dyachenko and J. Keidel: Veterinary Parasitology Vol. 167(2010), p.43.

Google Scholar

[4] A. L. Ben, W. Yang, G. Widmer, et al.: Journal of Water Health Vol. 10(2012), p.431.

Google Scholar

[5] J.A. Castro-Hermida, I. García-Presedo, M. González-Warleta, et al.: Water Research Vol. 44(2010), p.5887.

DOI: 10.1016/j.watres.2010.07.010

Google Scholar

[6] J.D. Eric, L.L. Jennifer, F.C. Gunther, et al.: Surveillance Summarie Vol. 55(2006), p.1.

Google Scholar

[7] J.A. Castro-Hermida, I. García-Presedo, A. Almeida, et al.: Water Research Vol. 43(2009), p.4133.

Google Scholar

[8] M. Belosevic, S. A. Craik, J.L. Stafford, et al.: FEMS Microbiology Letters Vol. 204(2001), p.197.

Google Scholar

[9] A.R. Keegan, S. Fanok, P. T. Monis, et al.: Applied and Environmental Microbiology Vol. 69(2003), p.2505.

Google Scholar

[10] A. Bajer, B. Toczylowska, M. Bednarska, et al.: Epidemiology and Infection Vol. 140(2012), p. (2014).

Google Scholar

[11] R.L. Wolfe, M.H. Stewart, S. Liang, et al.: Appllied Environmental Biology Vol. 55(1989), p.2230.

Google Scholar

[12] Z.L. Ran, S. F. Li, J.L. Huang, et al.: Journal of Environmental Sciences Vol. 22(2010), p. (1954).

Google Scholar

[13] H. Bader, H. Hoigné: Water Research Vol. 15(1981), p.449.

Google Scholar

[14] D. Belhateche, J. M. Symons: American Water Works Association Vol. 83(1991), p.70.

Google Scholar

[15] A. T. Campbell, L.J. Robertson and H.V. Smith: Journal Microbiology Methods Vol. 17(1993), p.297.

Google Scholar

[16] L.B. Susan, J.W. David, D.S. Mark, et al.: Gastrointestinal Endoscopy Vol. 49(1999), p.605.

Google Scholar

[17] G.B. Wickramanayake, A.J. Rubin and O.J. Sproul: Applied and Environmental Microbiology Vol. 48(1984), p.671.

Google Scholar

[18] S. Farooq, E.S.K. Chian and R. S. Engelbrecht: Water Pollution Control Federation Vol. 49(1977), p.1818.

Google Scholar

[19] J.A. Falabi, C.P. Gerba and M. M. Letters in Applied Microbiology Vol. 34(2002), p.384.

Google Scholar