[1]
Jung, J. -W.; Wan, J., Supercritical CO2 and Ionic Strength Effects on Wettability of Silica Surfaces: Equilibrium Contact Angle Measurements. Energy & Fuels 2012, 26, (9), 6053-6059.
DOI: 10.1021/ef300913t
Google Scholar
[2]
Dickson, J. L.; Gupta, G.; Horozov, T. S.; Binks, B. P.; Johnston, K. P., Wetting Phenomena at the CO2/Water/Glass Interface. Langmuir 2006, 22, (5), 2161-2170.
DOI: 10.1021/la0527238
Google Scholar
[3]
Saraji, S.; Goual, L.; Piri, M.; Plancher, H., Wettability of Supercritical Carbon Dioxide/Water/Quartz Systems: Simultaneous Measurement of Contact Angle and Interfacial Tension at Reservoir Conditions. Langmuir 2013, 29, (23), 6856-6866.
DOI: 10.1021/la3050863
Google Scholar
[4]
Bikkina, P. K., Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration. International Journal of Greenhouse Gas Control 2011, 5, (5), 1259-1271.
DOI: 10.1016/j.ijggc.2011.07.001
Google Scholar
[5]
Chiquet, P.; Broseta, D.; Thibeau, S., Wettability alteration of caprock minerals by carbon dioxide. Geofluids 2007, 7, (2), 112-122.
DOI: 10.1111/j.1468-8123.2007.00168.x
Google Scholar
[6]
Wang, S.; Edwards, I. M.; Clarens, A. F., Wettability Phenomena at the CO2–Brine–Mineral Interface: Implications for Geologic Carbon Sequestration. Environmental Science & Technology 2012, 47, (1), 234-241.
DOI: 10.1021/es301297z
Google Scholar
[7]
Farokhpoor, R.; Bjørkvik, B. J. A.; Lindeberg, E.; Torsæter, O., CO2 Wettability Behavior During CO2 Sequestration in Saline Aquifer -An Experimental Study on Minerals Representing Sandstone and Carbonate. Energy Procedia 2013, 37, (0), 5339-5351.
DOI: 10.1016/j.egypro.2013.06.452
Google Scholar
[8]
Anderson, W., Wettability Literature Survey- Part 2: Wettability Measurement. Journal of Petroleum Technology 1986, 38, (11), 1246-1262.
DOI: 10.2118/13933-pa
Google Scholar
[9]
Mccaffery, F. G.; Mungan, N., Contact Angle And Interfacial Tension Studies of Some Hydrocarbon-Water-Solid Systems. (1970).
DOI: 10.2118/70-03-04
Google Scholar
[10]
Adamson, A. W., Physical Chemistry of Surfaces, 6th edition; John Wiley and Sons, Inc.: New York, (1996).
Google Scholar
[11]
Rotenberg, Y.; Boruvka, L.; Neumann, A. W., Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. Journal of Colloid and Interface Science 1983, 93, (1), 169-183.
DOI: 10.1016/0021-9797(83)90396-x
Google Scholar
[12]
Cheng, P.; Li, D.; Boruvka, L.; Rotenberg, Y.; Neumann, A. W., Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids and Surfaces 1990, 43, (2), 151-167.
DOI: 10.1016/0166-6622(90)80286-d
Google Scholar
[13]
Gu, Y.; Li, D.; Cheng, P., A novel contact angle measurement technique by analysis of capillary rise profile around a cylinder (ACRPAC). Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997, 122, (1–3), 135-149.
DOI: 10.1016/s0927-7757(96)03853-8
Google Scholar
[14]
Rao, D. N.; Girard, M. G., A New Technique For Reservoir Wettability Characterization. In Annual Technical Meeting, Petroleum Society of Canada: Calgary, Alberta, (1994).
DOI: 10.2118/94-48
Google Scholar
[15]
Lun, Z.; Fan, H.; Wang, H.; Luo, M.; Pan, W.; Wang, R., Interfacial Tensions between Reservoir Brine and CO2 at High Pressures for Different Salinity. Energy & Fuels 2012, 26, (6), 3958-3962. (19) Rao, D. N.; Girard, M. G., A New Technique For Reservoir Wettability Characterization. In Annual Technical Meeting, Petroleum Society of Canada: Calgary, Alberta, (1994).
DOI: 10.1021/ef300440w
Google Scholar
[16]
Morrow, N. R., Wettability and Its Effect on Oil Recovery. Journal of Petroleum Technology 1990, 42, (12), 1476-1484.
DOI: 10.2118/21621-pa
Google Scholar
[17]
Kim, Y.; Wan, J.; Kneafsey, T. J.; Tokunaga, T. K., Dewetting of Silica Surfaces upon Reactions with Supercritical CO2 and Brine: Pore-Scale Studies in Micromodels. Environmental Science & Technology 2012, 46, (7), 4228-4235.
DOI: 10.1021/es204096w
Google Scholar
[18]
Espinoza, D. N.; Santamarina, J. C., Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage. Water Resources Research 2010, 46, (7), W07537.
DOI: 10.1029/2009wr008634
Google Scholar