Wettability Determination of the CO2-Reservoir Brine-Reservoir Rock System at High Pressures and High Temperature for Different Salinities

Article Preview

Abstract:

An experimental method has been developed to determine the wettability, i.e., the contact angle, of a CO2-reservoir brine-reservoir rock system at high pressures and high temperature using the axisymmetric drop shape analysis (ADSA) technique for the sessile drop case. The laboratory experiments were conducted for dynamic contact angle of CO2-reservoir brine-reservoir rock covering three interesting salinities (0 mg/L, 14224.2 mg/L and 21460.6 mg/L) at P=6–35 MPa and T=97.5 °C. For pure water system, θad (static advancing contact angel) increases from 71.69° to 107.1° as pressure of CO2 increases from 6 MPa to 35 MPa. θad decreases from 71.48° to 42.01° for the 1# brine system and from 51.21° to 23.61° for the 2# brine system as pressure of CO2 increases from 6 MPa to 35 MPa. θad for 2# brine system (21460.6 mg/L) is lower than that for 1# brine system (14224.2 mg/L) under the each same pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jung, J. -W.; Wan, J., Supercritical CO2 and Ionic Strength Effects on Wettability of Silica Surfaces: Equilibrium Contact Angle Measurements. Energy & Fuels 2012, 26, (9), 6053-6059.

DOI: 10.1021/ef300913t

Google Scholar

[2] Dickson, J. L.; Gupta, G.; Horozov, T. S.; Binks, B. P.; Johnston, K. P., Wetting Phenomena at the CO2/Water/Glass Interface. Langmuir 2006, 22, (5), 2161-2170.

DOI: 10.1021/la0527238

Google Scholar

[3] Saraji, S.; Goual, L.; Piri, M.; Plancher, H., Wettability of Supercritical Carbon Dioxide/Water/Quartz Systems: Simultaneous Measurement of Contact Angle and Interfacial Tension at Reservoir Conditions. Langmuir 2013, 29, (23), 6856-6866.

DOI: 10.1021/la3050863

Google Scholar

[4] Bikkina, P. K., Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration. International Journal of Greenhouse Gas Control 2011, 5, (5), 1259-1271.

DOI: 10.1016/j.ijggc.2011.07.001

Google Scholar

[5] Chiquet, P.; Broseta, D.; Thibeau, S., Wettability alteration of caprock minerals by carbon dioxide. Geofluids 2007, 7, (2), 112-122.

DOI: 10.1111/j.1468-8123.2007.00168.x

Google Scholar

[6] Wang, S.; Edwards, I. M.; Clarens, A. F., Wettability Phenomena at the CO2–Brine–Mineral Interface: Implications for Geologic Carbon Sequestration. Environmental Science & Technology 2012, 47, (1), 234-241.

DOI: 10.1021/es301297z

Google Scholar

[7] Farokhpoor, R.; Bjørkvik, B. J. A.; Lindeberg, E.; Torsæter, O., CO2 Wettability Behavior During CO2 Sequestration in Saline Aquifer -An Experimental Study on Minerals Representing Sandstone and Carbonate. Energy Procedia 2013, 37, (0), 5339-5351.

DOI: 10.1016/j.egypro.2013.06.452

Google Scholar

[8] Anderson, W., Wettability Literature Survey- Part 2: Wettability Measurement. Journal of Petroleum Technology 1986, 38, (11), 1246-1262.

DOI: 10.2118/13933-pa

Google Scholar

[9] Mccaffery, F. G.; Mungan, N., Contact Angle And Interfacial Tension Studies of Some Hydrocarbon-Water-Solid Systems. (1970).

DOI: 10.2118/70-03-04

Google Scholar

[10] Adamson, A. W., Physical Chemistry of Surfaces, 6th edition; John Wiley and Sons, Inc.: New York, (1996).

Google Scholar

[11] Rotenberg, Y.; Boruvka, L.; Neumann, A. W., Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. Journal of Colloid and Interface Science 1983, 93, (1), 169-183.

DOI: 10.1016/0021-9797(83)90396-x

Google Scholar

[12] Cheng, P.; Li, D.; Boruvka, L.; Rotenberg, Y.; Neumann, A. W., Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids and Surfaces 1990, 43, (2), 151-167.

DOI: 10.1016/0166-6622(90)80286-d

Google Scholar

[13] Gu, Y.; Li, D.; Cheng, P., A novel contact angle measurement technique by analysis of capillary rise profile around a cylinder (ACRPAC). Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997, 122, (1–3), 135-149.

DOI: 10.1016/s0927-7757(96)03853-8

Google Scholar

[14] Rao, D. N.; Girard, M. G., A New Technique For Reservoir Wettability Characterization. In Annual Technical Meeting, Petroleum Society of Canada: Calgary, Alberta, (1994).

DOI: 10.2118/94-48

Google Scholar

[15] Lun, Z.; Fan, H.; Wang, H.; Luo, M.; Pan, W.; Wang, R., Interfacial Tensions between Reservoir Brine and CO2 at High Pressures for Different Salinity. Energy & Fuels 2012, 26, (6), 3958-3962. (19) Rao, D. N.; Girard, M. G., A New Technique For Reservoir Wettability Characterization. In Annual Technical Meeting, Petroleum Society of Canada: Calgary, Alberta, (1994).

DOI: 10.1021/ef300440w

Google Scholar

[16] Morrow, N. R., Wettability and Its Effect on Oil Recovery. Journal of Petroleum Technology 1990, 42, (12), 1476-1484.

DOI: 10.2118/21621-pa

Google Scholar

[17] Kim, Y.; Wan, J.; Kneafsey, T. J.; Tokunaga, T. K., Dewetting of Silica Surfaces upon Reactions with Supercritical CO2 and Brine: Pore-Scale Studies in Micromodels. Environmental Science & Technology 2012, 46, (7), 4228-4235.

DOI: 10.1021/es204096w

Google Scholar

[18] Espinoza, D. N.; Santamarina, J. C., Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage. Water Resources Research 2010, 46, (7), W07537.

DOI: 10.1029/2009wr008634

Google Scholar