Leaching Behavior of Chlorpyrifos and its Main Metabolite TCP through 5 Types of Soil Columns in Laboratory Conditions

Article Preview

Abstract:

By applying the OECD soil column method, the leaching behavior of chlorpyrifos and it main metabolite, 3,5,6-trichloro-2-pyridinol (TCP), in five types of saturated soil was compared. The results show the following: (1) Chlorpyrifos can be retained in the five types of saturated soil, and the rate of chlorpyrifos residues in the five types of soil columns are 86.9% (Black soil), 80.3% (Red soil), 77.9% (Limestone soil), 74.7% (fluvo-aquic soil) and 68.9% (Purple soil) of the application amount; (2) No chlorpyrifos was found in the leachate; (3) TCP could fully migrate in the five types of 30-cm-long soil columns and the TCP residues in these columns are 34.4% (Black soil), 29.6% (Red soil), 24.8% (Limestone soil),14.1% (fluvo-aquic soil) and 10.3% (Purple soil) of the application amount; (4) The average concentrations of TCP in the 400 mL leaching solution were from 0.31 μg·mL-1 to 0.23 μg·mL-1; and (5) The Koc and GUS values of the TCP in the five types of soil showed that TCP has a great leaching risk compared with its parent compound of chlorpyrifos.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-180

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Racke K. D. Environmental fate of chlorpyrifos Rev. Environ. Contamin. Toxicol., Vol. 131( 1993), p.1~154.

Google Scholar

[2] Armbrust K. L. Pest Manage. Sci., Vol. 57(2001), p.797~802.

Google Scholar

[3] Baskaran S., Kookana R. & Naidu R. Soil. Res., Vol. 41(2003), p.749~760.

Google Scholar

[4] Fang, H., Xiang, Y.Q., Hao, Y.J., Chu, X.Q., Pan, X.D., Yu, J.Q., Yu, Y.L. Biodegrad. Vol. 61(2008) p.294–303.

Google Scholar

[5] Zia Chishti, Sarfraz Hussain, Khaliq R. Arshad, Azeem Khalid, Muhammad Arshad. J. Environ. Manage. Vol. 114(2013), pp.372-380.

Google Scholar

[6] Walker, A., Rodriguez-Cruz M.S., Mitchel, M.J. Environmental Pollution , Vol. 133(2005): 43-51.

Google Scholar

[7] Lym R.G., Swenson O.R. Environ. Qual. Vol. 20(1991), pp.209-215.

Google Scholar

[8] Berger,B. m., Wolfe N.L. Environ. Toxicol. Chem. Vol. 15(1996), pp.1500-1507.

Google Scholar

[9] Trubey, R.K., Bethem, R.A., Peterson, B. Agr. Food Chem. Vol. 46(1998), pp.2977-2985.

Google Scholar

[10] Borisover, M.D., Graber, E.R. Chemosphere. Vol. 34(1997), pp.1761-1776.

Google Scholar

[11] Gao, J.P., Maguhn, J., Spitzauer, P., Kettrup, A. Water Res. Vol. 32(1998), pp.1662-1672.

Google Scholar

[12] Celis, R., Barriuso, E. k, Hout, S. Chemosphere. Vol. 37(1998), pp.1091-1107.

Google Scholar

[13] Rutters,H., Hollrigl-Rosta, A., Kreuzig, R., Bahadir,M. J. Agric. Food Chem, Vol. 47(1999), pp.1242-1246.

Google Scholar

[14] Farrel.J., Grassian, D., Jones, M. Environ. Sci. Technol. Vol. 33(1999), pp.1237-1243.

Google Scholar

[15] Mats Larsbo, John Stenström, Ararso Etana, Elisabet Börjesson, Nicholas J. Jarvis. Soil & Tillage Research, Vol. 105(2009), p.200–208.

DOI: 10.1016/j.still.2009.08.003

Google Scholar

[16] Seyoum Yami Gebremariam. In: mineralization, sorption and desorption of Chlorpyrifos in aquatic sediments and soils. Wahington state university department of civil and environmental engineering, (2011).

Google Scholar

[17] Conrad, A., Dedourge,O., Cherrier, b.R., Couderchet, M., Biagianiti, S. Chemosphere, Vol. 65 (2006), p.1600–1609.

DOI: 10.1016/j.chemosphere.2006.03.046

Google Scholar

[18] S. Navakishore Reddy, Suman Gupta and Vijay T. J. Environ. Sci and Heal, Part B, Vol. 48(2013), pp.948-959.

Google Scholar

[19] Bao Shidan. Soil agrochemical analysis. Beijing: China Agricultrual press. (2000).

Google Scholar

[20] Sun bao-li, Zeng Xi-bai. Chinese Journal of Analysis Laboratory, Vol. 8(2011), pp.19-23.

Google Scholar

[21] Liu Cheng-lan, Zhong Guo-hua, GAO Yan, Chen Wen-tuan Hu Mei-ying. Journal of Northwest A&F University (Nat. Sci. Ed. ), Vol. 36(2008), pp.215-221.

Google Scholar

[22] Si You-bin, Wang Shen-qiang, Zhou Jing, Hua Ri-mao, Zhou Dong-mei. Chemosphere, Vol. 60 (2005), p.601~609.

Google Scholar

[23] Georg Haberhauer, Brigitta Temmel, Martin H., Gerzabek. Chemosphere, Vol. 46(2002), p.495~499.

Google Scholar

[24] David Landry, Sylvie Dousset & Francis Andreux. Chemosphere, Vol. 62(2006), p.1736~1747.

Google Scholar

[25] Thiegs B.J. edited by : DowElanco, Indianapolis. (1964).

Google Scholar

[26] Iosson. edited by : DowElanco, Indianapolis. (1984).

Google Scholar

[27] McCall P.J. edited by : DowElanco, Indianapolis. (1985).

Google Scholar

[28] Fermanich K.J. &Daniel T. C,. Environ Qual. Vol. 20(1991), p.195~202.

Google Scholar

[29] McCall P.J., Laskowski D.A., Swann R.L., Dishburger H.J. Proc. Assoc. Offic Anal Chem. Vol. 94(1980), p.89~109.

Google Scholar

[30] Gustafson D.I. Groundwater ubiquity score. Environ, Toxic and Chem. Vol. 8(1998), p.339~357.

Google Scholar

[31] Laskowski D.A., Goring C.A.I., McCall P.J., Swann R.L. in Environment risk Analysis for Chemicals.

Google Scholar

[32] Sun bao-li, Zeng Xi-bai. Journal of Agro-Environment Science, Vol, 30(2011), pp.1114-1121.

Google Scholar

[33] htty: /OECD-ilibrary. org/content.

Google Scholar

[34] Cui Yindi, Zhang Fucang, Li Zhijun, Qi youling. China Rural Water and Hydropower, Vol. 2(2009), pp.19-25.

Google Scholar