[1]
Caselli, P., Keto, E., Bergin, E. A., Tafalla, M., Aikawa, Y., Douglas, T., .. & van Dishoeck, E. F. (2012). First detection of water vapor in a pre-stellar core. The Astrophysical Journal Letters, 759(2), L37.
DOI: 10.1088/2041-8205/759/2/l37
Google Scholar
[2]
Herzberg G. Molecular spectra and molecular structure II: infrared and Raman spectra of polyatomic molecules. New York, NY: Van Nostrand Reinhold Co.; 1945 (reprinted Malabar, FL: Krieger Publishing, 1991).
Google Scholar
[3]
Liu X, Zhou X, Jeffries JB, Hanson RK. Experimental study of H2O spectroscopic parameters in the near-IR (6940–7440 cm-1) for gas sensing applications at elevated temperature. JQSRT 2007; 103: 565–77.
DOI: 10.1016/j.jqsrt.2006.07.008
Google Scholar
[4]
Information on http: /www. nel-world. com/products/photonics/semicon-ld. html.
Google Scholar
[5]
P.L. Ponsardin, E.V. Browell Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region J Mol Spec, 185 (1997), p.58–70.
DOI: 10.1006/jmsp.1997.7354
Google Scholar
[6]
R.A. Toth Measurements of H216O line positions and strengths: 11610 to 12861 cm−1 J Mol Spec, 166 (1994), p.176–183.
DOI: 10.1006/jmsp.1994.1183
Google Scholar
[7]
R. Schermaul, R.C.M. Learner, D.A. Newnham, R.G. Williams, J. Ballard, N.F. Zobov et al. The water vapor spectrum in the region 8600–15000 cm−1: experimental and theoretical studies for a new spectral line database. I. Laboratory measurements.
DOI: 10.1006/jmsp.2001.8373
Google Scholar
[8]
R. Schermaul, R.C.M. Learner, D.A. Newnham, J. Ballard, N.F. Zobov, D. Belmiloud et al. The water vapor spectrum in the region 8600–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction J Mol Spec, 208 (2001).
DOI: 10.1006/jmsp.2001.8374
Google Scholar
[9]
M. -F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C. Clerbaux et al. Water vapor line parameters in the 13000–9250 cm−1 region JQSRT, 82 (2003), p.99–117.
DOI: 10.1016/s0022-4073(03)00148-1
Google Scholar
[10]
Cousin J, Chen W, Fourmentin M, Fertein E, Boucher D, Cazier F, et al. Laser spectroscopic monitoring of gas emission and measurements of the 3C/12C isotope ratio in CO2from a wood-based combustion. J Quant Spectrosc Radiat Transfer 2008; 109: 151–67.
DOI: 10.1016/j.jqsrt.2007.05.010
Google Scholar
[11]
North S W, Zheng X S, Fei R, et al. Line shape analysis of Doppler broadened frequency‐modulated line spectra[J]. The Journal of chemical physics, 1996, 104(6): 2129-2135.
DOI: 10.1063/1.470969
Google Scholar
[12]
Bjorklund G C, Levenson M D, Lenth W, et al. Frequency modulation (FM) spectroscopy[J]. Applied Physics B, 1983, 32(3): 145-152.
DOI: 10.1007/bf00688820
Google Scholar
[13]
Agarwal G S. Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions[J]. Physical Review A, 1981, 24(6): 2889.
DOI: 10.1103/physreva.24.2889
Google Scholar
[14]
Schenzle A, DeVoe R G, Brewer R G. Phase-modulation laser spectroscopy[J]. Physical Review A, 1982, 25(5): 2606.
DOI: 10.1103/physreva.25.2606
Google Scholar
[15]
Bloch J C, Field R W, Hall G E, et al. Time‐resolved frequency modulation spectroscopy of photochemical transients[J]. The Journal of chemical physics, 1994, 101(2): 1717-1720.
DOI: 10.1063/1.467793
Google Scholar
[16]
Hall G E, Wu M. Photofragment vector correlations measured by transient absorption spectroscopy: cyanogen fragments from ethyl thiocyanate photodissociation[J]. The Journal of Physical Chemistry, 1993, 97(42): 10911-10919.
DOI: 10.1021/j100144a003
Google Scholar
[17]
Rothman L S, Gordon I E, Barbe A, et al. The< i> HITRAN</i> 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9): 533-572.
Google Scholar