Synthesis and Characterisation of Novel ι-Carrageenan Hydrogel Blends for Agricultural Seed Coating Application

Article Preview

Abstract:

Radical science and innovation in farming is vital to produce the food that the world will need by 2050. To feed an estimated world population of nine billion people in 2050, 70 % to 100 % increase in food production will be required if it continues rising at the current rate. The aim of this project is to develop novel revolutionary super absorbent hydrogel coatings for agricultural use. Hydrogel seed coatings improve the rate of seed germination and emergence and enhance seed survival during critical development periods, especially under less than optimal conditions. Preliminary work with ι-carrageenan hydrogel showed a promising results including higher seed germination rates, faster plant emergence, lower water requirement, enhanced root development and potential carrier of nutrients. Two hydrogel blends – agar/ι-carrageenan and xanthan/κ-carrageenan/ι-carrageenan – were synthesised and characterised in this project as potential seed coating materials based on their biodegradable, non-toxic sugar based natural polymers and their excellent water absorbing/holding capability. The newly formulated hydrogels were characterised by swelling studies, rheological measurements and infrared spectroscopy. It was found that the addition of xanthan/κ-carrageenan into ι-carrageenan hydrogel improved the water absorbing capacity from 117.90 % to 139.05 %, the life-span of the hydrogel from 6 hr to 24 hr in excess water and the gel strength from 108.4 Pa to 267.98 Pa. The addition of agar into ι-carrageenan showed an increase in gel strength and a greater improvement in water holding capacity giving 67.33 % water content while ι-carrageenan on its own had only 39.64 % after 72 hr of incubation at 30 °C, which showed higher potential to be used in drought conditions. The ATR-FTIR results proved that the hydrogels were physically cross-linked. A further evaluation such as the germination profile test is required to test the effectiveness of the hydrogel coatings on seeds. It is anticipated that this work will be extended to coating different seed varieties in the future with these newly developed hydrogels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-91

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Kaufman: HortTechnology Vol. 1 (1991), pp.98-102.

Google Scholar

[2] A. Akelah: Functionalized Polymeric Materials in Agriculture and the Food Industry (Springer, 2013).

Google Scholar

[3] R. E. Sojka, D. L. Bjorneberg, J. A. Entry, R. D. Lentz, and W. J. Orts: Adv. Agron. Vol. 92 (2007), pp.75-162.

Google Scholar

[4] Information on http: /puyallup. wsu. edu/~linda%20chalker-scott/Horticultural%20Myths_ files/index. html.

Google Scholar

[5] D. -F. Zeng and L. Zhang: Acta Agr. Scand. B-S. P. Vol. 60 (2010), pp.545-551.

Google Scholar

[6] D. -F. Zeng and H. Wang: Agr. Sci. China Vol. 9 (2010), pp.937-941.

Google Scholar

[7] W. E. Rudzinski, A. M. Dave, U. H. Vaishnav, S. G. Kumbar, A. R. Kulkarni, and T. M. Aminabhavi: Des. Monomers Polym. Vol. 5 (2002), pp.39-65.

DOI: 10.1163/156855502760151580

Google Scholar

[8] D. W. Davidson, M. S. Verma, and F. X. Gu: SpringerPlus Vol. 2 (2013), pp.1-9.

Google Scholar

[9] A. S. Hoffman: Adv. Drug Deliver. Rev. Vol. 64 (2012), pp.18-23.

Google Scholar

[10] A. N. Martin, P. J. Sinko, and Y. Singh: Martin's Physical Pharmacy and Pharmaceutical Sciences (Lippincott Williams & Wilkins, 2011).

Google Scholar

[11] L. O. Ekebafe, D. E. Ogbeifun, and F. E. Okieimen: Biokemistri Vol. 23 (2011).

Google Scholar

[12] D. Jhurry in: Second Annual Meeting of Agricultural Scientists, Réduit, Mauritius (1997).

Google Scholar

[13] B. Narjary, P. Aggarwal, A. Singh, D. Chakraborty, and R. Singh: Geoderma Vol. 187 (2012), pp.94-101.

DOI: 10.1016/j.geoderma.2012.03.002

Google Scholar

[14] N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa: Eur. J. Pharm. Biopharm. Vol. 50 (2000), pp.27-46.

Google Scholar

[15] S. Keppeler, A. Ellis, and J. C. Jacquier: Carbohyd. Polym. Vol. 78 (2009), pp.973-977.

Google Scholar

[16] G. O. Phillips and P. A. Williams: Handbook of Hydrocolloids (Elsevier Science, 2009).

Google Scholar

[17] V. L. Campo, D. F. Kawano, D. B. d. Silva Jr., and I. Carvalho: Carbohyd. Polym. Vol. 77 (2009), pp.167-180.

Google Scholar

[18] M. Cregut and E. Rondags: Process Biochem. Vol. 48 (2013), pp.1861-1871.

Google Scholar

[19] J. Smith and L. Hong-Shum: Food Additives Data Book (Wiley, 2003).

Google Scholar

[20] R. O. Mannion, C. D. Melia, B. Launay, G. Cuvelier, S. E. Hill, S. E. Harding, and J. R. Mitchell: Carbohyd. Polym. Vol. 19 (1992), pp.91-97.

DOI: 10.1016/0144-8617(92)90118-a

Google Scholar

[21] A. C. Pinheiro, A. I. Bourbon, C. Rocha, C. Ribeiro, J. M. Maia, M. P. Gonçalves, J. A. Teixeira and A. A. Vicente: Carbohyd. Polym. Vol. 83 (2011), pp.392-399.

Google Scholar

[22] Information on http: /www. brenntag. ru/en/pages/8_Downloads/1_Technical_Bulletins/ index. html.

Google Scholar

[23] V. D. Prajapati, P. M. Maheriya, G. K. Jani, and H. K. Solanki: Carbohyd. Polym. (2014).

Google Scholar

[24] T. R. Dapčević-Hadnađev, M. S. Hadnađev, and A. M. Torbica: Food Processing, Quality and Safety Vol. 36 (2009), pp.69-74.

Google Scholar

[25] J. G. Lyons, L. M. Geever, M. J. D. Nugent, J. E. Kennedy, and C. L. Higginbotham: J. Mech. Behav. Biomed. Mater. Vol. 2 (2009), pp.485-493.

Google Scholar

[26] J. A. Killion, S. Kehoe, L. M. Geever, D. M. Devine, E. Sheehan, D. Boyd, and C. L. Higginbotham: Mat. Sci. Eng. C. Vol. 33 (2013), pp.4203-4212.

DOI: 10.1016/j.msec.2013.06.013

Google Scholar

[27] X. -y. Li, D. Li, L. -j. Wang, M. Wu, and B. Adhikari: Carbohyd. Polym. Vol. 88 (2012), pp.1214-1220.

Google Scholar

[28] D. R. Paul: Polymer Blends (Elsevier, 1978).

Google Scholar

[29] Z. A. N. Hanani, Y. H. Roos, and J. P. Kerry in: 11th iCEF, Athens, Greece (2011).

Google Scholar

[30] M. Sur and K. C. Güven: J. Black Sea / Mediterranean Environment Vol. 8 (2002).

Google Scholar

[31] C. y. Lii, H. h. Chen, S. Lu, and P. Tomasik: Int. J. Food Sci. Tech. Vol. 38 (2003), pp.787-793.

Google Scholar

[32] C. -y. Lii, S. -c. Liaw, and P. Tomasik: Pol. J. Food Nutr. Sci. Vol. 12 (2003), pp.25-29.

Google Scholar

[33] L. Pereira, A. Sousa, H. Coelho, A. M. Amado, and P. J. A. Ribeiro-Claro: Biomol. Eng. Vol. 20 (2003), pp.223-228.

Google Scholar

[34] R. M. Silverstein, F. X. Webster, and D. Kiemle: Spectrometric Identification of Organic Compounds (Wiley Global Education, 2005).

Google Scholar

[35] A. Bellgrove, H. Kihara, A. Iwata, M. N. Aoki, and P. Heraud: J. Phycol. Vol. 45 (2009), pp.560-570.

Google Scholar

[36] M. Moosavi-Nasab, F. Shekaripour, and M. Alipoor: Iran Agricultural Research Vol. 27 (2010), pp.89-98.

Google Scholar

[37] E. Gómez-Ordóñez and P. Rupérez: Food Hydrocolloids Vol. 25 (2011), pp.1514-1520.

Google Scholar